
The Mark * Collection

This i s a limited edit ion two- di , k collec tion of software with documentation
which b u ndles together twenty produL~S oreviously sold individually by MISOSYS ,
Inc.-~ and Logical 8y•tems Inc . A collec tion is sold as- is; with no w~~r1u,t. ie ~
i m:pHe&,. All Mar k III programs will wol'.'k with LOOS 5.1.4; no utilization of LOOS
5 . 3 enhancements are guaranteE:~ nor wi 11 any of t:1'~ _programs be modified in any
way rsy MISOSYS s Ineo: . All MARK IV programs will wol'.'k with TRSDOS 6.2 ;, ni;,
u tili za tion of LS- DOS 6 . 3 enhancements are gua,nm teed nor will any of the
programs be modified in any way by MISOSYS, Inc , Thi s is a final sale; no returns
a r c accepted .

You g e t the following prografus and files in a Mark I I! co l ~ect ton;

ALLOC/ CMD , BINCONV/g(ftf bINPLAY/CMJ, 8INPRINT/CMD , BSORT5l/GMJ>~ BSORT53/ J OL,
CALC/ASM , CALC/FLT ,. ::-F t+11~ E/CMD, co~ .\/ASM, CQ!ffl-1/J'LT, ®WfQ . .,.., f .,,, ,-:.;..=.? /FLT,
CTLG/FLT, CVTEXT /CMD; (01>/Qf:D, DED/GMD, l>!S~RtB! / fflJt, DIQ~f!.~/1;; . ijl;QtA1~/TI 1
DMP2005A/FIX , OOAUTO/" 10 , DOCONF I G/C,l"!D, OOiQl f/ff~".f, ~J~\f,f/f1 r;J, _ J AS ,
OO SPEED, FLT' D\IORAK/ JQ,T, EBCDIC/XLT,. . EPBINt",4\T/e~m t ~,. -~¥'~t,~#g:-!)~,tl,QHJ ,
_ ,...., ... , """ ,:-rr,c, r/,-,,1n -,,..,.., ,.. , - ... - .. - -.... ,_ - ... - -~, ~r ,..,.,, .. ~ -- •, ·•... · •- · · -

!µ.~~IU1+'.~ , KS!-,'rr:;r:t@,t'"t,· Ks"f1}'Y;lJ;", f:i?LT ~ LCC~~ -1J{St:1~ :lf~~,.? -~~·
LiJ.ic,FEED/FLT , LI STB~J / ASM, LISTBAS/FLT , LOWER/ ASM , IDWB.BJ li'r.:!\ . P.RGH{/ . . 1,,

MARGIN/FLT, MAXLATE/ASM, .MAXLATE/FLT, ¥.EMDIR/CMD , MEMD+SK/DCT, .iO~Il'OJ/~~;
MON,ITOR/FLT, NAME/CMD, NODAM/CMD, PAGEP,t\WS/A.SM, PAGEP.i\W~ / f LT , PARMDil / ~p,,
PDS/CMD, PRTOGGLE/CMD, PTRAQF;/CMD, tu:,4')/q)ff, REZ10VJ /CMD~ . RSBINCA~/~~ ,
SLASHO/ASM, SLASHO/FLT, SLOSTEP/ASM, SLOSTEP/DCT, STRACE/CMJ~ STRif7/ASM,
STRIP7/FLT, STRI PCNT/A§M, STRIPCNr / Ft.:r, TITLE/ASM, TITLE/FL!, TRi:P/4,$?-f, ?JJ..Jtr/11.:1:.
UNKILi.../CMG , UPPER/ ASM, UPPER/FLT , VIDSAV/CMD, WC/CMD, XLATE/ASM, XLl.n/fLT,
XONXOFF/FLT, ZCAT/CMD, ZGRAPH/CMD, ZSHELL/CMD

You g e t t he following programs and files in a Mark IV collection :

ALLOC / CMD, ALTDISK/CMD, ALTLD/CMD, ALTRES/CMD, BE/LMF, BINCONV/CMD,
BINPRINT / CMD, BSORT/CMD, CALC/CMD, CRLF/FLT, CTLG/FLT, CVT324/CMD,
DD/CMD, DED/CMD, DESCRIBE/CMD, DMP2006A/FIX, DOCONFIG/CMD,
OOSAVE/r' LT, EPBINCAT/CMD, FKEY/CMD, FM/CMD, FTS/CMD, FTS/HLP,
HELPGEN/l'MD , IFC/CMD, IFCLIST/CMD, INSTALLB/CMD, IO'iON/CMD ,
LSCOMP/CM.), LSFEDII/CMD, LSQFB/CMD, MAPPER/CMD, MEM.GIR/CMD,
MOD324/CMP, NAME/CMD, OD/CMD, PARMDIR/CMD, PDS/CMD, PROCESS/CMD,
PRTOGGLE/CMD, PTRACE/CMD, RD40/CMD, RSBINCAT/CMD, STRACE/CHD,
UNREMOVE/CMD , WC/CMD, XONXOFF/ FLT , ZCAT/ CMD , ZGRAPHICMD, ZSHELL/CMD

BINPLAY/CMD ,
CVTEXT / CMD,
DO EDIT /FLT ,

HANDY /CMD,
KI STORE/FLT ,
MINIDOS/FL'I_',
PROCURE/CMD,

SWAP/CMD ,

Th e complete Volume II six- is su e set of the LOOS QUARTERLIES is also i n cluded i n

e a ch co ll ection.

MISOSVS 1 Inc.

BEEP - BASIC Enhancement and Extension Package

The BEEP package will add enhancements to the BASIC supplied with TRSDOS 06.02.00 for
the Model 4/4P. It is designed and tested to work only with BASIC version 01.01.00,
running under TRSDOS 06.02.00.

The diskette supplied with this package contains two files: BE/LMF and INSTALLS/GMO.
The enhancements need to be installed on a copy of BASIC. To perform the installation,_
use the INSTALLS/GMO program. INSTALLS will append the enhancements (which are
contained in the BE/LMF file) onto the end of the BASIC/GMO file.

Installing BEEP

Simply enter this command at the TRSDOS Ready prompt to install the enhancements:

INSTALLS

A prompt will appear, requesting the drive number which contains the program file
BASIC/GMO. After answering this prompt accordingly, the installation will take place
on the specified dri_ve. If the installation cannot be done, an informative message
will be displayed, and the installation procedure will abort. Some of the situations
which may cause the installation procedure to abort are:

1) The drive specified does not contain BASIC.
2) The drive specified is_ write protected.
3) The BASIC contained on the drive is not version 01.01.011}.
4) The BASIC contained on the drive has the "enhancements" installed.

Enhancements

BEEP adds several enhancements _to BASIC version 11JLl1JL011J. Each of th~Jollowing _BASIC
commands may be. represented' as.single.characters: When us1ng a s·irigle character
command, the effect will be much the same as when the entire word is used. This
abbreviated form is only acceptable when typed on a command line, and cannot be
incorporated in a BASIC program line or JCL file. The abbreviations are:

A - represents the AUTO command
D - represents the DELETE command
E - represents the EDIT command
L - represents the LIST command

The following are some examples of using abbreviated commands:

E211l
L. -511}

A15,3

05-511}

- Edit line number 20
- List all program lines starting with the current program

line to line 511}, inclusive.
- Enter the AUTO line entry mode, starting at line 15, with a
· line increment of 3.

-· Delete 1 ines 5 through 511}, provided that line numbers
5 and 511} exist.

Notes: Use of a space is not required when entering abbreviated commands. Due to the
manner in which the BASIC command interpreter works, the period cannot be used for the
last 1 ine in a line number range (e.g. the command L5-. will produce an error -
however, the command L.-50 is acceptable).

BEEP - BASIC Enhancement and Extension Package
Page 1

The following commands are implemented by pressing the, indicated . key as the first
character in the command line. No carriage return is necessary; the indicated action
will take place immediately. Note that any of the following single key commands must
be the first character entered on the command line.

<.> (period) - Performs the same function as LIST.<ENTER>, which
will cause the "current" line to be listed.

<,> (comma) - Performs the same function as EDIT.<ENTER>, which
will activate the "edit mode" for the "current" line.

<UP ARROW> - List the next lower numbered line in the program.
The line listed will become the new "current" line.

<DOWN ARROW> - List the next higher numbered line in the program.
The line listed will become the new "current" line.

<LEFT ARROW> - List the first line of the program and set the
"curtent" line to the first line.

<DOWN ARROW> - List the last line of the program, and set the
"current" line to the last line.

Two new commands are included with the BEEP enhancements. The <C> command will allow
the duplication (copying) of a specified existing line number to a non-existing line
number. The <M> command will allow an existing line number to be moved to a
non-existing number. As with the single letter abbreviations, these commands are only
valid on the command line. The syntax for using the <C> and <M> commands is:

Caaaa,bbbb
Maaaa,bbbb

In each case, aaaa represents the existing line number and bbbb represents the new
line number which will be created. The line number specified by aaaa must exist, and
the line number specified by bbbb cannot exist. If either of these conditions is not
met, a Syntax Error will be generated, and no line movement or changes will occur. A
comma<,> must be used as a separator between the two line numbers. The following
examples will illustrate the use of each command.

Assume that you currently
a duplicate copy of this
that line 20 and line 35
command:

have a line number 20 in your program, and you wish to make
line as line number 35 (where line 35 does not exist), so

are identical. To perform this line duplication, use this

C20,35

Using these same assumptions (i.e. line
exist), suppose that you wish to move
change the number of the line from 20

number 20 exists and line number 35 does not
line number 20 to line number 35 (in essence,

to 35). To perform this line movement, use this
command:

M20,35

Notes: When either moving or copying lines, line number 0 is invalid (for either aaaa
or bbbb), and will cause an error if used. Al so, moving a line wi 11 NOT change any
internal program references to the old line number. In the above example, any lines
containing internal references to line 20 would have to be manua1ly edited to ref~ect
the new line number.

The last enhancement found in BEEP deals with loading and saving program files. BEEP
contai~s enhancements to perform high-speed loading/saving of programs. There will be
a significant decrease in the amount of time it takes to "SAVE" or "LOAD" a BASIC
program file, provided that the load or save is done in compressed format (i.e. for
loading, the program was not saved in ASCII; for saving, the "A" parameter was not
specified).

BEEP - BASIC Enhancement and Extension Package
Page 2

BSORT/MOD324 - Copyright 1984 MISOSYS., Inc. All rights reserved

BSORT
BSORT is a high speed sort utility for sorting BASIC arrays. Any type of array
(integer, single/double precision or string) may be sorted. Sorts can be per
formed on one and two dimensional arrays. Thi~ following syntax is used to
initiate a sort. Note: "Integer Numbers" refers to integer variables or
constants.

==================:-====--===·::==-----·------=--------=-=====
SYSTEM 11 RUN BSORT NUM%, *IND%ll P SA (i<), parm, parm, ••• , parm"
SYSTEM 11 RUN BSORT $STR\IAR$ 11

I
I
I
I
I
I
I
I
I
.l
I
I

NUM%

*INO%(x)

PSA(x)

Number of elements to sort (an integer number).

Optional single dimension integer array. If not
used. re-ordering of elements will occur in the
array being sorted. If used, the sort will
generate an index array containing element
numbers of the sorted array. and no re-ordering
of "sorted arrays" will occur.

Primary sort array. An optional <+>or<-> may I
precede the array name to indicate the direction !
(ascending or descendinq order) of the sort. If l
not specified,<+> is assumc-:d. A dt:claration tag!
(! 1 #1 $,%) must be used for any array specified. I
A subscript must be specified, representing the I
first (~lement number to be sorted. It must be an I
integer number. !

Optional parameters are as follows:
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SSA(x}

TA

(s,n)

$STRVAR$

Secondary sort array. If used, a<+> or<-> must
precede the array name. The sort key used will
include corresponding infonnation from the
primary and secondary arrays. Any re-ordering of
the prima~y array will cause a corresponding
re-ordering of the secondary array. More than
one ma,y be used. A subscript is required if the
secondary array is two dimensional.

Tag array. Any re-ordering in tl1e primary array
will cause a corresponding re-ordering in a tag
array. A tag drray cannot be preceded by a <t>
or<->, and may only appear after all secondary
a.rray d1~fin'lt·lons. More than one rna_y be used.

Mid-string information. Vai id only with STRING
arr~ys. If specified, it must immediately follow
the array informatfon, and cannot be used with
tag arrays. If spec~fied 9 the sort key will
begin at positions in the string. for n
characters, wheres and n are integer numbers.

Opti•Jndl nurH:irray string var"labie conta"ining
the sort parameters. Must be used if the length
of the sort command {i.e. the number of chars.
within the quote marks) exceAds 79.

- '• ••~- ,_-,. - •~••- ,_ -••••• ,,.,.:._,• ,•' •-••> •,.,, ·•••·~ :• •,~', ,., •,. ',., •.-~ ,_,, ',,,. 'O'O ,','" ••· •..,: "• n~ """•'' ~•• -• •h~•"'O"' •.,. •,,_ •"' ,,..-, •~•, •,,' ',, ,•:.~ ,,.,,,,.,,. ' •~ '·-•-

BSORT ... l

BSORT/M0O324 - Copyright 1984 MISOSYS., Inc. All rights reserved

BSORT can be used to perfonn many different sorting tasks from within a BASIC
program. Only variables and arrays that have been "established" can be used;
BSORT cannot allocate memory for variables or arrays. If an un-dimensioned arriy
is 4sed in a sort command, an error will be generated. The following examples
illustrate the many different types of sorts which can be perfonned.

Sorting a Single Dimension Array

Sorting a single dimension array is the simplest type of sort. An integer, sin
gle/double precision, or string array may be sorted. In order to sort a one
dimension array, two parameters must be passed to BSORT: the number of elements
to be sorted, and the starting position in the primary sort array. As an example,
assume that the following string array exists in memory:

A$(1) A$(2) A$(3) A$(4) A$(5) A$(6)
==
I SMITH I JONES I BROWN I WILLIAMS I JOHNSON I GREEN I

==
To sort the array, this command would be used, with the results shown below.

SYSTEM"RUN BSORT 6,+A$(1)"

A$ (1) A$ (2) A$(3) A$(4) A$(5) A$(6)

I BROWN I GREEN I JOHNSON I JONES I SMITH I WILLIAMS I

In the example, the number of elements
the sort being perfonned on array A$
e 1 ement 1.

to be sorted was specified as six, with
(the primary sort array), starting at

In this type of sort, a re-ordering of elements takes place. The sequence is in
ascending order, so that the value of A$(1)<A$(2)<A$(3) etc. The plus sign<+> in
front of the primary sort array indicates that the direction of the sort is to be
in ascending order. In this case, the plus sign is optional; if the primary sort
array appears without a sign preceding it, the sort will be in ascending order.

Sorting may also be performed so that the re-ordering is in descending order.
This is accomplished in the sort command by using a minus sign<-> in front of
the primary sort array. Thus, after executing the sort command:

SYStEM"RUN BSORT 6,-A$(1)"

the value of A$(1) would be 11 WILLIAMS 11 ; the value of A$(6) would be "BROWN".

Note that in the above examples, the number of elements to be sorted (6) and the
starting array position (1) were specified as integer constants. Any integer
constant which needs to be passed to BSORT can be specified as a simple (non-ar
ray) variable. The only restriction in using a variable as a value passed to the
sort utility is that it must be an integer type, with the type declaration tag
(%) explicitly present. DEF statements (e.g. DEF INT) may be used; but the var
iable as used in the sort command must have a type declaration tag.

Arrays used in BSORT must have a type declaration tag. In the above examples, an
error would occur if the commands DEF STR A:DIM A(6) were issued and the fol
lowing sort invoked, since the<$> declaration tag was not present.

SYSTEM"RUN BSORT 6,A(l)"

BSORT - 2

ight • 1 Inc. All rights reserved

When sorti an array, any of the array may sorted any number of
elements, Ass
ments {A$(0) throu

es at A$ is dimensioned to have 7 ele-
sort can executed.

This sequence
ascending o

BSORT NM%,

s would cause
1 ea Vf2

I!

2 through 5 to be sorted in
6 untouched.

An error 11 if sorti bt:yond the mensioned length of
generated if NM% the array. In abovE.; example, ·l is 2, an error will

is assigned a value greater than 5.

Using Secondary

More than one
Secondary sort
included int
and will be re

array may
arrays can
sort (i.e.

in

the
a the

a id in
unction with the pr

ts of a sort operation.
sort array, and will be

rection of the sort
array).

For example, assume t l I owi arrays are currently activ1;1 in memory.

array A$
ndi

ng '

r ·1 ' \ .• J JI,$ (2) (4) A$(5) (6)
,.·· ~···-~·-· ·- .. ~·-" .. ·· ... ,.' --~---- .. ,·--··-·,· ··~- "~~, __ ,.~---·-· ·~··,.· -~···--··--__,_,._:· ·:~-----·' ,, ' .,,._- - ... ,_,.

ITH I I:; I ., I LL I ,JOHN I JONES I
~-•~,a~--•~-•~••••"/4,''_,,..,..,_.,._,"'""'~~~~--• ',m''"",' ••-•• '••-•--•• •-•- • • •~•-,,,.,,.,_,_ _ _,,,.•, ___ .,.._• ~

(J.) (2) (4) (5) F$(6)
-••-••• ''••~ ' •• ,-'•s'•,''· __ .',.---~~••~,'-•.,.,'' . .,.,,• -•••~ ·v ,,..~~•~•, · -•m,•,~.,._,,.,," :,.~-~~----•-,;,•••~-~--• M,.,_,•• ,.,,..,,._.•,~,-• . .,~_,.

I BILLY I "'j""f
I, I R. D I C s I

·-··. ,." ·~·· .. , ·,, ., --~ ;· ··-·-~"' ~ .", '' -~ --~ -· "'"-· '",. ,..,..-......... - ·_._., ' - "', ," "~· "'" '"" --· '~,,.,_·~.-® - - -· ' .·.·,~--" .,., ·-. '~

sents i'i ·1 i st
name. It ·is to

the first name 'is
the last names are Th e l I O\lii i n g

F$ contains the
these names ·in

sorted order when
to accomp! i sh

this task, with

The array F$ is
termine
a seco

below,

(1) (Z) (3) (4 (S) (6).
'~--·· - -~-. '·:, ___ - "~--~" ":,, · .. ·,, ·,., ----- · .. ·,.. ~•- .·' - ,, · ,"_;; ·-. ,,•' ' ','" - - '~~' -- : ' -· ·- .. '~'' ' '·"· ~, .. ~ - .: . .,,. -~· ,. ~ - -~-- -

c-· 'I .) s I , .. l
.) i WI IAMS I

,. •- -•• "" -••," -• .. •=••••~•••- "•' ',,., • .. ,,''' ,...,, ,,,. ,..,.,:•~ ,.~ ,,,,, ~• ' "'-' ••w ,•.- _;,•' "~- ,,..._~~ '· •- ,' =••"•' ',''' . "- ,,.,_,_ ,,, - • '•_. .-=' •• ,~

(1) F$(2) F$(3) (4) (5) F$(6)
••.' •.,'_.._,~~- •-•~,,, ... ,._•.,..• _,,..,.,•,..,."',_,' :.,..,..~•-••w,•~"''"--•~• ••••><•""" ••' •"••---~•-~~• _.,.''' '~~-•-"''""''- ••_,_,,

I CH/-\RLES ! TTY I BILLY I I HICHARD
', ••$ "' , • .,.",.. •~:, ••• :,.:. ,,",,_.,,_,_ ,•~~U• •~• <••' -• ~ .--~•••• ,.,,, - "•-.,,~ ~-- ,, ', • ., •••• ,w,,a~ ~---- •~•••'' - ..,. ,:;:;: ••~"'•'"'""" •.,~ ',,.•-,.,., •• ~ ,, .. -=~~•-::;: •~ ~::.

a secondary sort array. sorting process to de-

;;irray is spi~cif i
assumecL Any

r_y arrai,
with

!li'JHH::S to

·i s l n pr ima,ry array. When
diri':ct correlation tween e·lernents in the
1ng whi occurs in the primary array will

Thus in this ex c~, first names were
last names, aQy exact matches on the last

BSORT/MOD324 - Copyright 1984 MISOSYS., Inc. All rights reserved

There are some points that need to be made with respect to syntax and usage of
secondary sort arrays. When dealing with a single dimension secondary array, it
must be separated from the primary array with a comma. Additionally, no subscript
number is required. Any re-ordering which occurs will be done according to the
element number in the primary array (i.e •. element 1 in the primary array corre
sponds to element 1 in the secondary array). Futhermore, secondary arrays must be
dimensioned as high as the largest sorted element number in the primary array.
For example, if a primary array is dimensioned to have 50 elements (0-49) and a
secondary array is dimensioned to have 10 elements (0-9), a sort using both ar
rays could only be performed up to and including element nine. An error will be
generated if the sort should go beyond the highest allowable element number of
either the primary or secondary array.

Unlike primary arrays, use of a direction sign(+ or-) is mandatory when speci
fying a secondary array. The direction of the sort in a secondary array does not
have to match that of the primary array. Using the above arrays (A$ and F$), the
following sort command would produce the results shown below.

A$(1)

SYSTEM"RUN BSORT 6,+A$(1),-F$ 11

A$(2) A$(3) A$(4) A$(5) A$(6)
==
I JOHNSON I JONES I JONES I JONES I SMITH I WILLIAMS I

F$(1) F$(2) F$(3) F$(4) F${5) F$(6)

I CHARLES I BOBBY I BILLY I BETTY I SAMMY I RICHARD
==

Note that the directioning of the secondary sort array (in descending order) did
not affect the re-ordering of the primary array (ascending order). However, any
exact matches in the primary array caused the secondary array (first name array)
to be sorted in descending order.

Using Multiple Secondary Arrays

The concept of using more than one secordary array does not differ greatly from
using just one secondary array. In terms of syntax, commas must separate subse
quent secondary arrays. The same restrictions also apply when more than one
secondary array is used (i.e. the mandatory direction sign and the dimensioned
lengths of the arrays).

The important point to note is that the order in which the arrays are entered on
the sort command line may have an effect on the results of the sort. That is, the
first secondary array specified will be the first array used to determine the
results of the sort. As an example, examine the three arrays that are shown on
the next page.

BSORT - 4

1

0) (2) ('.), I
·"•' 1

l h 'l
\ ... , I

'I
•

(6)

$

en
,~ .. •-a,'''••~- .. "•-' -• _,,, =, - •~~ ~• ·:• •- ,,_ •' ,_~ e',- -• ••~ ,' > '•, - •••:= ',•., •"~ ,,~,..,: "" :.,.., -• •;: .. ,,, ,:.,,~,• '"' '_,, .. ,: :''A'...,," •-••" -- . ,,,,'. • •-- 0,0;.• -

(1) F$(3) (4 (5) U)
~• - ", O"' 0"6 --•~·•"' -~· ,.• ~•• O O<'o~ •,, •.,. ~--~"~, .. ,, • • •• •' O' O ,,,'" -••'• • ... :• •' ',' •,,, •,•,""'""'AW•,_ H

0
0 ---••,• .. • "'"""'" ',S,_..,.,,_. ... ,•.' , O -•"'' ;;;;:,,":';.

N RB
•- - ••• •~• • ... ,' •-• ~~ -•~ .,•, A'•••<•••_,,••~-•' : ,,' .. ,,, ,,,.: -• ,-,., ,: 0 '0 -~ •,,o ,~,. 0H ::,·~-•OT, •' U e•,,._: ' ... • ••~ . •: ,_ •~~ kP•••~ -~"' '·-•- : .. , _,,•:•.,,,_ -•• -• ,,

1 %(1) (2) I%.(6 }j:;(7)
- ' - , •.,.,, - •••• .~ •-' -•• ,,m, •••• '~ ", - •-: •- ••~• •-• •.-, ••• , ', •••• "'" ,,.,. ,,,,, ,..,, ~ .. " ,.,., ••~ .,~ """' •,, ,w "' ,., •.:•,' ~-• ' '",.' .' ~,-. ••~ '•••~ -,, .,' ¥'"" -• - =• - •--~ ~'

_I '1
l J. 1 1 I ,~

I l : 1 ! 1007
~~- ._ ... -,~ -·· ":"" '" -·. -~· ._ :··~ ·-1/' -; :·:··-~ "''' ':._ · '" "-~--' ' .. · -·- ', --· _., ,,., · .. · '~, ,.,,, -~, ... _,_ ,." ,'. _,,,' '' '··~·' -·· - ' '-•·• -~:;;:;. "':.; ,:::;:..::;:.;.:::

Array I\$ contains la:, names, J\r
lD numbers. Consi results

C{Jnta ·ins f fSt namf~s
fo 1 nr1 ~,ort command

1% conta·i ns
low).

pr
occurred

If t
would

s

I '! \
I. ... / (3) (4) l\$(5) (6) 7)

,., ··--: ~•••• '':"' ·-· ·-· :·-. -- ·•.~ ~ ~ : ·: .• '" -~. 7"'' _,'. ,, '·: ~· '"'"." ~;; •. " "'.' '""". ::::: ~ ffi" .~,- "". -~ .. "":' """ '"'" ."" -·· •.• " •• , '.~ "'" ·- ·- - """.: --· ., •• '""'. ,"'" -· -~-- ~ ~'-: -

s ! ,, I
) i

-~ .'"• -::'.". •- ·"~ - , ... '"''."' •••• ~• ,"~ ~- •" :••• 'W., •"•• ,_ ••~ """ •••• :-• ~ ~• •~• •- ••,• "."" •.~'" ~• ',''•· :•" ~ ••• '"~ :•••, ~ ••• ~~• •• ,.. ••• •- """ •"n ao•: "'",a,•-:~-'••,~,••••••~""" "" ~••,• ••·••

F$(U (3) F$(4) F$.(5} F$(fi) en

I% ()]'% (2 1%(6) I'Ul)
:'.'~ ,::.;:~ ~-; •;;;, ;-:,;, :::;: •:: ~•.-; :-:;.,; ::::, :-:,: ,:: ::-:. ••.~, .:;; ::::: ;-:;. :,:~ ,:::•' .";.~ ;:.~ ,--::,:, ,;;, • .. ,~ ;.,;: :::• ~~~ ;;,: ~::: ;::,: :'.;,, :::• ••~ "'" "'H • ,," •- '"'," '" ,, -:-, ",• :• "'. "'"' -~, ::-•,• "", ,PS :"" -•• ,~M• .•s, ,.,,, "" .. - "."'' •",••

I 1 7 ! J. 'I I , l 1 ! 1
•. , • ~ ."~ '"'' 7"'. ~'.' ~··· ••• "'"" ·~·· --~ '"'" ~": .,.,

y sort occurred on tne last name (a o
n

t

the: irst na~e was used
) ~

·1 i3 st. na.rne 'j

If two
ands

people first
in

arr,<'1,vs ,,,1:::re
if nt.,

$ n l (2)

F$(lj (,, ,,
J. i

"" -·· .. : ,,,,; ;,, ~-- , ... ,.·,

I%(1)
:'::'; ,;::. :::: ;·.~ :::;; ::::~ -~•; ,-~ :: :.:. ,: ~ ,:;:: ,·:: .::·:: ;·:. ;'.",;, -~ ..

{ ,,, '
\ ,')) /\$ (4

' !5

1 hH:,,
assoc·ija

,' \
\ j

results obtai
results.

",,,r _,,, '"' " ~•• .,.,, -~,• ·•" ,"" -·• ',_.. , ' .. ~

s j 1TH l

F$ (7)

I'¾.(6) .C%(7)

BSORT/M0D324 - Copyright 1984 MISOSYS., Inc. All rights reserved

Note that the last names did sort in ascending order. Hovever, since the I% array
appears immediately after the primary array, any identical match found on the
last name caused the next sort criteria to be taken from the I% array, with the
results being determined in descending order.

Using Tag Arrays

In addition to using secondary arrays, Tag Arrays may be specified on a sort
command line. They are similar to Secondary sort arrays, with the exception that
the information contained in them has no bearing on the results of the sort. If a
tag array is used, any re-ordering which occurs in the primary sort array will
also occur in a tag array.

Tag arrays are distinguished from secondary arrays by the lack of a direction
sign. If an array (other than the primary array) has no direction sign, it is
taken to be a tag array. If both tag and secondary arrays are to be used, ALL
secondary arrays must be defined on the sort command line prior to any tag array
definitions. Subsequent tag arrays must be separated by commas, and no subscript
number is required.

Consider a last name - first name example, where the following arrays have been
defined in memory.

A$(1) A$(2) A$(3) A$(4) A$(5) A$(6)

I JONES I JONES I JONES I WILLIAMS I JOHNSON I JONES I

F$(1) F$(2) F$(3) F$(4) F$(5) F$(6)

I ROBIN I BILLY I BETTY I RICHARD I CHARLES I BOBBY I

A typical sort command which makes use of F$ as a tag array could be represented
by the following, with the results shown below.

A$(1)

SYSTEM"RUN BSORT 6,A$(1), F$ 11

A$(2) A$(3) A$(4) A$(5) A$(6)

I JOHNSON I JONES I JONES I JONES I JONES I WILLIAMS I

F$(1) F$(2) F$(3) F$(4) F$(5) F$(6)

I CHARLES I ROBIN I BILLY I BOBBY I BETTY I RICHARD

Note that the last names are sorted in correct ascending order. However, since F$
was used as a tag array, it did not affect the results of the sort, and only a
re-ordering of the data occurred. The order of the items shown in the F$ array is
related to the re-ordering of the A$ array. Whenever exact data matches occur (as
is the case with the name JONES), re-ordering is done in a random fashion. If
additional sort information is required, it should be specified as a secondary
sort array. If information is only to be "moved along with" sorted information,
it may be specified as a tag array.

BSORT - 6

BSORT/MOD324 - Copyright 1984 MISOS'(S •• Inc. All rights reserved

MIO$ Sorting

When sortinn st1··inq ~~l'f,1ys, Ml optfon,:il MiDi (mid ·.;·:.,1n9) p.::1.ramtitr.r may be. spec
ified with nr·inMry • nd/or second;ll'v ,1rrav~;. (l\·:s win ,1.now :,,(1\"i:lnq to be don(i on
;; ct-v·-i,1q ;i,,;, .. ,,,1 ,,.,,·::n.-•1 11•,·1l',,' '•1 ,,,.,,,,,,. .. ,r·;.,1·l n.:-11.>r c·1·/' ·1,·'r1P 1:1'r·ir1n Tf 1,','-'··',,'1~f1t,1,,,··in,'.1' _.,, r;,,,_ .• _,,,,.
¾ii. .. ~t 'I.>, ~ • :.. (,.1 . t;;l_;r L,1 .. ,1 j • '~'.j •,,'. '3 '~·- .. '!<. f)'...,, 1 , .. ,J I I~ ')!J' .•• ~ ' ' ,. .,, ... · ,, ' I ::~ ~, ,, l ,¥ "'. U-.. . ,. ,,,. ~,,..,. i

formed, the entin: •;trinq element wn l be 'moved".

As an example, consider the following two st,·1ng arr6ys.

L$(4)

ID, Bi),UWN i E. SMrr:1 : T, ,JONES ! Fl. SMi.TH ! P. ,JONES i
• ~ •••: ., ," ,""' ":" :~ ••,.~ '.", "- ''.'" ::n• ..,,, .,,_ .,~ ••" -: ,,~, "" •,~" ••••:', ::-'° ••,', -"•• _,,. "':• ••~, 7'"' :•• ••• ,0,0< -•• , •• _, -•• n•~ ••- "'" ~- ""'. nfl :•:,. ~•• ,",'' "".:' "~' ••= ~q ~• ,,_. ~"' ••"" ;-• ,w,- ,,.,, _,.,, •m ¥"' ,,. ,.,.,

F$((/) F$(?) F$(4)
"'",'. :'.'':' ,,"" ·:· .,., ~ :"'" "':" ''." -~·: ·,•:· ··"' "·"' .•. '."'' .. -. ··-: ,~ ,_, .-: _,., ~- '"' - :"' _ .. -~,_ ·~ ·- ;"''.' -~·: '"' ·~· ~.,~-··OM"-~·::~·-~ ••M ":" \' -·. "."' ~ ... "'" ~- ,.,, ·-· _,.,, nv, ,•.~

l BR, UAU:. I SM, HOB l i('\ ,··::o-iv' •<U pl'('Lj ! '),') 0··-1·•:· ·1 ', .•.. , • ' L "f\ l ! ,., ' " l , ' ,. l. '> ' t. t, .
0 :;:: ,:;. v', ,.;-, ::.: :::, :::: :• • ',, • ••~,, .~ _. ',.' •••; :.;.,, -,~• ,.::'; ,.:,~, ::,, .,.,, ~• '°' '"'~ •~ •••• •~• ... , "'' ~• 'e,,: , N ', ""' '•- ••••• -• .,,'' " _,_ •··• , .. , ,.,, ' ~ O ::.,-: _. · "~' ::, .,,"'', ~ ,'.';:;: .''':: ,.,,, , ... ,.,,,; ,,;;; ~.;,• n.,;

Array '..$ contains a first name init1a1, f::.nowf.'.d by:, p(:.riod., a ~;p<1ce ,rnd a ·1ast
name. Arre.\Y F$ r:.unti.nns LhP fh·:;.+. 1.:r10 charM 1.f:n ot the 1r,s,t naiilf:, followed b_y a
crnnma, i"i spac1;•, and the· f'ir;t ni.iin(':, i.1i'iU1 a sort to be dorw ln the order of last
nan1e - f·irst nan1e~ th"iS sort cornm,.~nd cou"!d !-:;e u~:;r~d, v;·"!t.,i the: rr:~s1ults shown be.low ..

L,$(0) :,. $ (.l) L.$ (?)

r:::r (0)

l t:{:"
••>' I j ./

F$(3)

L.$(4;

j" d I' rl \
i" ,/; \. •+ I

In this S(Jrt command,. the prirnc1r::1 ~;nrt array is the Lt arri.1.y, \\/hi'ie F$ h a c;ec•
ont.iar~y arra.,;,1 1r B~Jth 1.rriJ .. \l~:, ttr(:· ~-;']rt ·in 2:i .. 1.:1~.-~·-:~nd·i ng frrder

The MlD$ informat·lon i;nm:;,·)·ii:it,:"i.Y fol:ow:-. th;:; ::;i.,;bscrlpt p(:•;ition for thr: in1mary
array., It 1:-) enc·to:~t?d ~d .. ~t::··i·1n pa 1·,f:,,rithese,:::;'.\l I:irid -t .. ~or1~:·ists of tvJ<J intt:!~.,er nuinbers~
rh,:~ first :·luinbe:Y· spec·l·f·~;.::~~--: t.h-F:: pcJs·it·\c>n ·11i1 thi.::! stri;n(J ~.iv?'~i,::~·tf~ the! '._:;ort cr·it,::~r·i,~.
begins. Here, the strings in tt1e i.! array arc to b2 ·scrt~d starting with the
fourth ch,H''H:ti:,r· (Le. U11:: first: ::.hHra1:l:r.::r .'.!f ti1E d.St rH'r,1e). The, :,econd nurnbet'
tf::·11s th(~ sor·t ~)t~·-i·It,;l th(~: nuriber of c:.ht1r·a.ct1:::r·:_:; to .. inc·lucle ·iri tht>. sort fr·o;n the
startinq pcs1t'i,:1n .. Here,. sr:vf.1/i ch,:1r(,ct1;H, of 1,':i1:;;h ::,tring (sta.rtin~1 at po,;Hlon
foor of the strin(;) i.,11 1 : 1.::w1pri:,;e (hP sort k•:'Y f:rr- !:.ht: r•rimar,v :::nrt ~1rr,1.1.

Similarly, MlD$ inh:rnw.tion h,:1',. bet1n ~,upp1 ii:1d with 1.ht::1 :;i.::uindary ·:,ort dlT,1y.

Using thr F$ array, tne sort key~ 11 hegin 2t a0sition 5 (i.P. the first chJr
acter :lf the f·ir'?,t ,::1m?) fr, e:.ir:h e·10:rnent or U1e ,1f'ray, iH1d 1:1d.er,d for 6 chara.c
ters into ~dch striny. ThJs, the ~wc1 a1rJys dre scrted i11 the orJ0r of last name
- f I r .st irnme .

Severnl pnint::; need to 1)1::: Ji:1de with r+".:.;;:,eci: to i•t;!D$ s;or-:: information. lt. 111ust
alwdj",; hnrnediately fc,l:rJw UH: l.:1st ple<:i: uf infc,i•m,'\tion ii~,",Clciat,\d vrit.h the array
(i ~f;., no cornma. sepa.r,D.tr)r -1~:~ t!Sl·~,1J) \.ihf~·,n ~::10V-'t·ir,q i:;·lnq·~(~ d·lrn(~ns.•ir)n arra,ys,, t:.h·is
w'ill co1n1::, d.fter ti'if, c1'.}'.,.ir,,:; ;,aren::hc:!;;.'i'.:. of th~-, ~db\,C:"i(>t nurnbt;;· for trHJ pri111<1.ry
array, and ,.1-ft1:!r the d1:c• ctr-:'r:•; iO'l L:tfi ,.1f t 1·;c ·;;c•cond11r1 dr,·,:iy.

BSORf,. l

BSORT/MOD324 · Copyright 1984 MISOSYS •• lnc. All rights reserved

BSORT will ~OT chrck to sti0 if tne MID$ values are valid for any string, with the
exception that the; m11st not exceed 255. If the stJrting MID$ position exceeds
the entire length of the string in question~ a unull" value will be used for that
particular el~nent 11f thr array. lf the starting MID$ posittcn is within the
string, but the number of r:hzH·act:t:rs to usi~ for sort uiteria is mon'. than what
is remainin9 in the strin9, only the r~;111o.ining cha1'<:1cter~,. hdll he used,

For r~xample, A$(1),.'1!1l"~ A$(;?),.,."B)'E'1 and A$(3)"'"T!H:S lS THF END". Thi:~ following
sort commands will producE~ the n~sults shown below.

Sort Command

L SYS!EM"RUN BSORT 3,A$(1)(1,3)"
2. SYSTEM"RUN BSORT J,A$(1)(2,4)"
3. SY STf-J.1"f1UN B S01H 3, A$ (1)(3, 2)"

Ordering of EI ements

;!,1,3
3,1.2
1 ~ 2, 3

In example 1., the first 3 characters of each string M'(0 used ln the sort to de
tennine the results. In example 2, the second through fifth characters of each
string are used. lr1 exa1nple 3, characters three and four of each string are used.
Si11ce the first ar,·ay position only has a length of two characters, its sort
vafoe is "null", ancl so it was sorted "first" (in ,Jscending order).

Generating an Index Array

The previous examples illustrated methods by which arrays were sorted into either
ascending or descending order. With those sorts, the array data was re-ordered,
so that physical access of the array (by ascending/descending element numbers)
•,.;a.s required to Sf:,,' the o:;c1rt1,1 d re',uHs, In some ca.ses (such as reading data h,to
an array from a random access file) it may not be desirable to actually re-order
an array \'✓ hen "sortinq", Thus, BSOiH ma_y i1lso be tEed to qenerate index arrays.
BSORT will initialize the index array to conta!n the element numbers of the array
to sore, ThE ,;ort w i l I n.~•-order the fodpx drTay., so that the va 1 ues in the l ndex
array will fonn d 1 ist of pointers to the "sorted" elt?!fh':'nts of tt1e primary array.
For ex.ample., a::,:sume. thctt the foilow·in(J a.rrays are currently in rnE•mory:

P$(2) p $ (3) P$(4) P$(5) P$(6) P$(7)
=··· ~- ,_:.,, .. ,.:. __ =-~••-· , ,~---- -~-,.-~ ·~----~---~-:,.,.~·=·: -~·-~----·----··-----· ... '---~~--·"····-·=-' '-"-''. ,·,._· ---·-~------· "-~·-

I WILLIAMS i SMITH i JONES I BROWN I GREEN I JOHNSON I RICH !
-- - ------------- --·-----7 ·-------·---- ·-- -------- ------

I%(l.) r x (2 l I%(3) 1%(4) I%(Sl I%(6) 1%(7)

..... ---------- -- -- ----- -- ------- __ ; ____ ----------------

The sort command listed below could be used to create the index array 1%.

SYSTEM"RUN BSORT 71 *I%(l) 1 P$(l)u

p $(2) P$(3) P$(4) P$(5) P$(7)

1 urL 1 rA1 ... (' 1 ,·Mnu 1 .;•o~.1::-,· 1 13R('•UN , r:P't:1:·N 1 1(·1HM<'l)N '1 Ril'H ·1 ! w1 LJ, .7 1.) I .• J , 1 1 ... '~"--',.), l JI,"(! ...),, .. ~., j v 1,.J., , . \..,

1%(1) [%(2) I%(3) I'.t(4) IX(5) 1%(6) I%(7)

BSORT - 8

r

Not ice -, '"" JJ,. () '., ,.
values ar ay (l

primary array. %(1)
is the first element to access
si e to rint P$ array content

NT P $ (J 't (L % /l)
NEXT 1.. '%

\~hen us inq ,rn i
items sort on t~1t~.

ctr

i nde.:,:

indicates that an i to
dimNis'ion i

t ·i· on,, ·rh •·is u
Fina.1l_y.,

to contain all values
Failure to ere to s ~ill more

a rd i nq t hf· u /.:) sc r 1 r1 urn bf.:'.r u w t q·i th;,:'. ·i
para."l ·i e 1 to sul.iscri numrJe1'

not ma tory that the::,.e twl) :,.ubsc!" i pt
that e 1,·iow·1 ·jn i:_::r array e;,:,lst-~. ·in melr(Jr 1,

P$(

llow the n of
a.steri sk <-Jr) wt~ .. i

A '.sSu lot
position

constant or

an error,,

in most cases it will
sort ar ay. , it is

same .. .I~ assumi::>

IX{l) /4(2 1% 3) I%(4) !%(5) I%(6) I%(Y) 1%(8) 1%(9) l

Usl rr.~i_y, th(~ fo; l ot1·1 :isi sor··t cornma.nd on P$ arra_y {s.Pe
previous examp e) wi pro ,;r:.i:~ thr:! ,::!·~.:Ju 1 s :~h(:ivvn~

I%(8) I%(9) 1%(1)

'1

l

1~' ,,
1 rn s :::-;ort (::: t!rn;.~n·t:s :)f t 1?$ a.•r"fa.)/

onnar.ion in % arr,:y, start!
l a ·1 n t.h~.:: 1· a._y 'r;¥f,i"e u na. r fr:(:
the <.i. rr a,_y c: i)r·r E::: ·: t f'if'. ·1 r.~1n(;r·1t 11

I% array was ~nit a ly dimenslo o
1i SOY' t CC:Jll1Hh i1,f:JU "! cl Ca 11) :,:; f'.; C'. n (·~ r·ri.)r' ;'

Tni2 error would
ar

(

I) may be
meters (i.e. Ml ana
t same, with the excep ion
ma w l
would
would

21·11 Jf
\
j"

dlri 11

s nc.t exist. 1'

the, pr·e v cru s ·1 y
such

13, ., and store
that t:.,1 c!,n(~nts

) • t

para
renk, 1 n

corn
st ·i t
i!l''f'Or

BSORT/M00324 - Copyright 1984 MISOSYS., Inc. All rights reserved

Sorting Two-dimensional Arrays

BSORT supports the use of two dimensional arrays as any type of array (primary,
secondary, tag) in a sort command. This section will discuss several variations
of using two dimensional arrays.

Throughout the documentation, examples have been given of various sort procedures
using single dimension arrays. The array illustrations have alway been depicted
in a "horizontal" fashion, representing one row of information with multiple
columns. Sorting a one dimension array implies that a row of the array (in this
case the only row of the array) be used as the key information, with individual
columns being re-ordered (or indexed) to satisfy the requirements of the sort.

This same concept can be carried over to two dimensional arrays. An individual
row of the array is specified, from which the key (sort) information is re
trieved. Additionally, a starting column number is specified, and the number of
elements to be sorted represents the number of columns involved in the sort. If
re-ordering is required, an entire column of data is 11 moved 11 •

As an example, assume that this array (A$) has been established in memory.

-------------------------- COLUMN -------------------------
I 1 2 3 4 5

11 DALE DAN DON DICK DOCK
R 21 BROWN JONES SMITH GREEN PETERS

31 25 34 19 53 42
0 41 BOSTON BUTTE BALT PHIL PITT

51 03021 78654 23376 19769 16511
w 61 MA MT MD PA PA

71 REP REP CLIENT ADV STOCK

If it was desired to sort this array by 1 ast name in ascending order, the fol-
lowing sort command could be entered, with the results shown below.

SYSTEM"RUN BSORT 5,A$(2,l)"

-------------------------- COLUMN -------------------------
I 1 2 3 4 5

II DALE DICK DAN DOCK DON
R 21 BROWN GREEN JONES PETERS SMITH

31 25 53 34 42 19
0 41 BOSTON PHIL BUTTE PITT BALT

51 03021 19769 78654 16511 23376
w 61 MA PA MT PA MD

71 REP ADV REP STOCK CLIENT

Several points can be drawn from this example. The total number of items to sort
is 5. Row 2 is designated as containing the information to sort. The sort will
begin at column 1 (in row 2) and continue for a total of 5 columns. If a
re-ordering is to take place, all information in the given column is "moved"
(essentially, the two columns involved in the re-ordering are "swapped").

If the A$ array were used as it appeared initially (see Example 1), and the fol
lowing sort command was issued:

SYSTEM"RUN BSORT 2,A$(5,4) 11

BSORT - 10

BSORT /MOD324 ... Copyright 1984 MISOS.YS. j lnc. A 11 rights reserved

A swap of columns 4 and 5 wou1d be performed., Th·i,; sort would use informatfon in
row 5 as the key .. The s.ort 1wJuld begin at coiumn •It,, and inc1ude 2 columns (Le.
columns 4 and 5), Si nci:' J.6511 ii; less than 19769, a re--orderi ng would occur.

Assume once mor1:: that: the A$ arr!(Y ,~xists in memory <'lS shown ln Example 1. It is
desired tu generate ,i.n index array (I%), where the infor,nation hi ro1tJ 3 is sorted
in descending order, fhe following sort command would dc:complish this, with the
results shown below.

<:v5·r•·M 11 RlJN BSO'Rl. r "1"'1 ;· -·A$i ~ 1 ·i" .,.,·, ,t . .),, /t,.,_,.,., ,, """'''Jo,.

1%(1) 1%(2) 1%(3) 1%(4) I%(5)
•- S'~• -w ,~' ~--~,;' ',. - •••• ' ' '""" ~• •••' •- :_,, ••~ • 'v,,, _,.,•, ... A"• ... ~ • '•-•~~:•

0
'•M

Note that when indexinq a two dimensional array,
sorted array is stored in the index array. The sorted

the column position of the
a.rray remains unchanged.

Using Two Dimensional Secondary and Tag Arrays

The concept behind surtir1g two dl1nensional arrays carries over to the use of two
dimensional secondary a11d tag arrays. In both instances, the number of rows 1s
insignificant. The numbi::r of column~, fri eHher a secondary or tatJ arra.v must be
as large (or gre,:rtf:r than) the h·lqht!St co·iumn number to be sorted in the primary
array.

In the ca.sf, of d ti,q drrcty, no sub 0~cript is required. !~•~-orderfoq of columns in
the tag array will correspclnd to those re-ordered in the pri1nary array. The
entire column wi:1 be nrnovt?d 11 , req,:rrcnes·:; of tnr n,m1b2:r of ro11;s in the arra/.,

The sa~e re-ordering rulrs apply 10 two d'.mensional secondary arrdys. However, a
subscript must be included witli the secondary ~rray. The subscript will be t~e
row number from which kf1Y 11::'m·m~itien ;,, to bf:01 taktin.

!I.$ (1) A$(?)

l 2
R 11 !'Ht: S
0 21 2:5 r" J,j

W 31 D/\Lf DOCK

.At (.3) A$(4)

COLUMN

SALFS
....... q,::

DIC~~

A$(S)

,-
J

DTSl
19
DON

The A$ array is to be the µrimary array, and row three of the 8$ array will be
used as seconclary sort inforn1ation. Tne folfoitdnq sort comma.nd would yield tr11.~se
re SU ·1 .,. ,. ' ·1 r\ ')'' .; ···n ., r· y "riv• r b V '1 ;, ,. r (P,"i""· .,, " ..• <1· '"I(·• .• ·r·~ ,, f' ri •··t !)y .c ·i 0" ,;: ·~ r• :Hf!'·' 'i· w 1' t· h t '1 '~ ' , \., ::, \ 11- t:; ..., f f ; l ((· ,, ..:::, ·~ I ,..,. ,., .,,,. ,,J· '-,Ji l ,,~ !I ,.:, ,,,~ !,,., I J \l. .. r ~'- ,,,,. 1 ,, . , \ , t ... ~ .,_, d/H ~-,· .. , } ..., ~ f (,.,

s11rted arrays heing shown 011 the next Drlge.

{"Yr"f".M"R 1'N 1•s·c·R'' ,. A$··,'· ('$(1'' ~.) :~t "'),,,J ! ::>, .. (.. i,;.+c) ,v)

8~,0RT - 11

R
0 ,, ...

BSORT /MOOJ?i~ ··· Coµyright 1984 MI SOSYS, ~ lnr .• A I 1 rights n:served

A$(1)

I 1
1 l SAL F S
21 4:?.
31 DlCr<

COL/IMN

[JOCK DI\LE

lt

M/'.iR
34
DAN

A$ (':))

f)
qu·r
1_..,. .t .) '

19
DON

Note that any n!•-ordririr:9 wrilch
(corn~::.pondin9) co1u,rm in the W~

occurred in the primary array forced the entire
artd.Y 1~0 be 1';1oved.,

The same re-ordering will
s,Jb<:.cript ls not requin.'rl,
be re-ordered according to

o,'.:cm ,fa t\.to dimen<;iona.l taq i.l.r"Td)I 1s used. A
Entire cohmms (rr~qardless of the nw11ber of rows) "'1'il1

the corresoondirig re-or·dering of the primary array.

When usin9 two dimen:;ion211 secondiH'Y ,:rrra_ys, the..: same ,'HTdY can be used more than
once in a sort comm~nd, provided that the row specified is different in each
case, As d ma.tt12r of f,1ct., if thr! prhnary ;,tr!'ay is two :J-imensional, a row dif
ferent than tr12 pr i•nary :::url: row r1,:;:f be ':;peci f-led as a secondary sort array. In
the casr: of our first exarnpie de ✓l.iin9 with h10 dirrif:nsiona\ arrdys, if it was de
sirecJ to obtdln a. sc:rt on this :'tlTdY primar·1ly by 1a.st name (row 2) tlnd secon
dar·i·iy b.Y fl:-~;t n<:>.me (rovl I)!F i.he fo~'i('iw1nq ~i{)rt command C(:uld bt: used:

SYSTFM 0 RUN BSORT 5 ,,A.$(2, l) ,+A$ (1} ''

This ,vou id havE> the a+fcct uf us i nq row ? ·Jf the A$ ar·ray ,JS the primary sort
information, while using row l of th,.:· sa:ne array as :,econaary sort information.

1t ls permissib1 e t0 use the MID$ function when dealing with
secon(iA,t.}/ .:ir·1···ciy:;., As ·i ·:.:1 t:i·1e case ~iJith a. one diniertsion primar,y
infon:1d\>ion \>40uld i1;1medi:1Le·1y follow rhe row subscript of the

The following example illustrates the ~yntax that would be used:

As a final point.
two di mens i CHI ti;
arr-a,.\/, the M1. D$
secondary array.

SYSTEM"RUN BSORT 10,XX%(2,5) 1 +C${3)(19,8)•

Here~ XX% ·fs the pt"'~mdr)' array!\ The~ ~;ort w·•1·1·i f-1f: on roi,,, 2 of this array, starting
c.1t cr.l 1umn ~;,, It win extend fnr· tu co·!11mns (up to and h,cluding co'!urnn 14). C$
w~ f 1 ht: u·s!:.~d as th~:• sc: .. cond(:i.r,y arrd,y,, co·iumns fj.~.J1, of rc,·w :~ 11;i·i 1 be. used~ Within
each of tf1e~t2 f·,·/Qment~;~, a. MID$ td•i; ·; bt~ perfot'(ilt:d, ~\(1 that the str'ing used i'.1 the
sort wil 1 begin ,:lt posit icn 19 r;:f each f!lemenL, ,::nd f:'.1tend fot 8 characters.

Using a \/ariab'i.e to Pass the Sort Comm,:ind

Depending on Hie nwnber of pararneter·s specified, the len9th of an actual sort
command may become q1rlte large, /\ limitation do~~·:; e::xi<;t ·;n thdt the total length
of a SYSTEM command carinot exceed /9, For this rec1son, BSOlH al"im11s for the pas
sin9 of sort parameters in a simp1e strin~1 varlat/le,, For example, this command
utilizes information contained in P/\R:"1$ as thf:: pdr,1mc~ter 1, to use for the sort.

PARMS "' 11 10, *I I%(1). ·-AA$(4, 1) { 15,20), +AC#(3) $ -SD$(7) (13,8) 11

SYSTEM ~RUN BSORT $PARM$"

In the cormn.-:i.nd which inlt at 1:s the sort, a <$> must precede the string variable
containin9 th€~ sort pil.rdme Ers. In 1.E,1nrJ thi::, type of sort command, the only
!'imitation is tha.t. the l,~ng h of the ~,t.r·lrHJ cannot exceed 25~.i characters.

BSORT ·• 1?

BSORT/M00324 - Copyright 1984 M1SOSYS.,, Inc. A'l1 rights reserved

MOD324
MOD324 is a util lty designE!d to <.1id 'in CCH111r::rting proqrains created under MODEL
III BASIC to MODEL 4 BASIC. The MODEL JII program mu~t be contained ori a diskette
formatted by either MODEL 4 TR.SDOS/i_S-·DOS or MOO::] .. l l I LDOS (use CONV to move the
program from a MODEL III TRSDOS diskette to a MOOEL 4 TRSDOS/LS-DOS diskette).
The fo"l1owing syntax ·is used (from the DOS Ready le!vel) to pf:rfom1 a convf}rsion:

MOD324 filespecl f·1·1espec2 (parm., •••• pann)

filespecl MODEL 111 progrdm Lo convert. Must be "Savedtt
hi compni'_;sed format. If r,ot. specif-led, it
wi 11 be prompted for.

filespec2 F11e t,, contain t~e co~verted program. If it
doe·~ not exist, the file wi"i! be credted. If
it exists, the previ11us contents of the file
will b~ overwritten. If not specified 1 it
wi 11 IX: prompt.ed for.. \4hen specH'ied on the
on the command 1 i ne, it mu'.~t appear after
fi 1 e.sped.

Optional parameters are as follows:

MODIFY

CENTERo:n

PRINf

WlDJll.:::.n

abbr:

Adjust nwncr; ;; cons !;;.,nts , n Pf/ l NH) sta ternents
to the c,1rrespo~ding valur (absolute raw and
co1wnn ro~ition) on the MODEL 4 video.

Additional offset value which is added to
all PRINT0 pasitions changed by MllDlFY. Will
'finrk only ii' MODtFY \s :,,pecif·it~d. will ,flso
of·"f·s.t~t numf:·ric co~-;s.t:a.nts in PRINT TA.B
str1temen1.s ac,.'.Drd·inq to the :'.olumn position
of the vJlue enter~d. Default is 328.
(4 i irH!:-;,, 8 column:;j

'.;f~r1d ,J!.1tp1it nf pos:;it1lf~ mi1nual correctlorir:, to
thi:>. printer. If not specifl1?d, output wi 11 be
tn vidf~O.

Can ue us~~ 011 1 y if PRiNf is specified. Will
dt:!terrn·~ne the m.r,1}_,·imurn numbtE~r of charactt:,:r'S to
F1fUNT p,,,1-- iin1. Uefault i·:; BO.

IMPOHTAN1 N O T I C E

MOD324 is designed to be ~SE(I as Jn aid 1n co11vHrting prugrams which are cur
rf1nUy running on the MODE!. 1Il to;: fi.1 r-rni:1t thrd. CMI bi': ri~ad by the MODEL 4. Some
pro9r,.0un comm<'inds and ::,(!Queno~', v1h·•i:h f:_,rg;: lo:·, ;:•rr,H' frt::l! on !.lif! MODEL 1 [I will
NOT work on the M(JUC 4. Lverv Rtt:•::•ript is rn,H.li: I\Y MOD3?.4 LJ fL~9 possible error
situations that could re~,1lt. How~ver, tt:er~ ~s N(; GIJARANfEE (implied or other
wise staterl) that a orugram ccnve~ted ~Y M0~3?4 will ½Ork, even if no ~Manuul
correct 'ions 11 w1::1 r,:::~ ·ind 'i ca t;:~d ..

BSORT/M00324 - Copyright 1984 MISOSYS., Inc. All rights reserved

Program Description

MOD324 can be used to convert MODEL III programs to a form that can be read by
MODEL 4 BASIC. The MODEL III program must be stored in "compressed format" (i.e.
it should NOT have been saved in ASCII). MOD324 will create an ASCII file con
taining many of the necessary changes to allow the program to be run under MODEL
4 BASIC. Some of the conversions that will take place are:.

1. A 11 11 Tokeni zed 11 key words and symbols found in the MODEL
III program will be changed to the corresponding ASCII
representation of the key word/symbol in the MODEL 4 file.

2. Spaces will be inserted into the MODEL 4 text where
needed. This includes inserting a space after non-function
key words (i.e. those that contain no information within
parentheses, such as FOR, TO, NEXT), and after
variables/constants which precede a key word, and are not
separated from the key word by a terminator (e.g. in the
sequence IF A%=10THEN A%=5, a space would be inserted between
the <O> of 10 and the <T> of THEN).

3. Any value used in conjunction with a CLEAR statement will
be "stripped off". For example, if the statement CLEAR 5000
appeared in the MODEL III program, the resulting statement in
the MODEL 4 text would be CLEAR (the function of the CLEAR
statement is entirely different on the MODEL 4).

4. Numeric constants used with PRINT@ and PRINT TAB will be
adjusted to a corresponding print "position" on the MODEL 4
(if the MODIFY parameter is specified).

There are cases in which no conversions will take place. Any information which
appears in the MODEL III program file as ASCII will be left as is. No alterations
will be made to either information appearing within quotes, or information fol
lowing a 11 Tokenized 11 REM statement (i.e. the apostrophe character).

Aside from the program conversions that are required, other problems may arise
when converting a MODEL III program to run on the MODEL 4. One such source of
difficulty is with program statements that exist in MODEL III BASIC but have no
meaning on the MODEL 4. Another consideration is in program statements which
exist in both BASICS but function differently for one reason or another. Although
"translation" of these types of commands would be difficult (if not impossible),
MOD324 does provide feedback (i.e. output to the video or printer) on commands
that could pose a problem if used with MODEL 4 BASIC.

The following is a list of MODEL III commands that will be "flagged" by MOD324 as
possibly needing manual correction.

CLOAD
CMD
CSAVE
ERR
IF (when not followed by THEN)
INP
INPUT #-1, INPUT #-2
NAME
OUT
PEEK
POKE

MOD324 - 2

POINT
POS
PRINT@
PRINT TAB
PRINT #-1
RESET
SET
SYSTEM
TIME$
USR

r

, PRINT #-2

BSORT/MOD324 - Copyright 1984 MISOSYS •• Inc. All rights reserved

PRINT statements {in particular PRINT@ and PRINT TAB) receive special consider
tion when encountered by MOD324. Although these commands are accepted by MODEL
BASIC, video output can cause a problem, since the video sizes differ {64xl6 ~
80x24). For this reason, any occurrence of PRINT@ and PRINT TAB stat'ements wi
be flagged. There are provisions for MOD324 to adjust values associated wi
these PRINT statements. Refer to the information on the MODIFY and CENTER par
meters for further details.

The last situation which will be flagged by MOD324 is when the resulting conve
sion would cause a program line to exceed the maximum line length. Due tot
"expansion" of key words and the insertion of spaces, a MODEL III program li
could be converted into a line which is greater than 254 characters {the maxim
line length in MODEL 4 BASIC). When this type of situation occurs, the line wi
be truncated, and any information in the orginal program line that could not
saved to the MODEL 4 program file would be displayed on the video {or sent tot
printer). In this case, a new line will need to be added to the MODEL 4 progra
incorporating the "Lost" information. Note: Program logic may be affected by t
truncation of a line.

Program Usage

To perform a program conversion, a 11 that is required is to enter <MOD324> at t
DOS Ready level. The following prompts to appear (one at a time).

Input Filespec?
Output Filespec?

Pressing <BREAK> in response to either prompt wil 1 cause a return, to DOS Read
Any error encountered while answering these prompts (e.g. File not. in di recto
or Write protected disk) will cause the appropriate error message to be di
played, after which the same prompt will re-appear. All entries must follow t
rules associated with valid filespecs.

The first prompt is for the name of the MODEL III program. Answer this prompt
entering the associated filespec. If a drivespec is not used, a global search
all active drives will be performed. Please note that if the file has an exte
sion, the extension must be specified (i.e. /BAS is NOT assumed).

The second prompt is for the name of the file which will contain the convert
program. If the filespec entered does not exist, it will be created. If t
filespec does exist, any information previously contained in the file will
overwritten by the converted program text. It is recommended that a drivespec
included with the output filespec, to assure that the file is written tot
proper place. If a drivespec is not entered, the output file will be written
either the "first" drive containing the file, or to the first available drive
the file does not exist on any drive in the system.

Both filespecs may be entered on the command line. For example, if the MODEL
program TEST/M4 is to be created {on drive 2) from the MODEL III program TEST/E
(on drive 1), the following command could be entered.

MOD324 TEST/BAS:l TEST/M4:2

If only one filespec appears on the command line, it will represent the in~
filespec, and a prompt will appear for the output filespec.

To see the results of performing a conversion, assume that the following progr
has been created by MODEL III BASIC, and was saved in compressed form using t

MOD324 - 3

BSORT/MOD324 - Copyright 1984 MISOSYS., Inc. All rights reserved

filespec SAMPLE/BAS.

10 CLEARSOOO:DEFINTA-N:DEFSTRS,T
20 CLS:FORL=lTOlO
30 PRINTTAB(S)"This is Line";L;"on the MOD III video";TAB(45)"Position
45 11

40 NEXT L

It is desired to 11 convert 11 this program for use on the MODEL 4.
file to contain the converted program is SAMPLE/M4 on drive 2.
command may be entered to accomplish this.

MOD324 SAMPLE/BAS SAMPLE/M4:2

The name of the
The following

Two results will occur from the above command. An ASCII file containing the con
verted program will be created, and feedback for possible manual program correc
tions (if any) will be given. The first consideration is the program file that is
created. The following is a listing of the file SAMPLE/M4.

10 CLEAR:DEFINT A-N:DEFSTR S,T
20 CLS:FOR L=l TO 10
30 PRINT TAB(S)"This is Line 11 ;L; 11 on the MOD III video";TAB(45) 11 Position
45"
40 NEXT L

One point to draw from this listing is the insertion of spaces. Spaces will be
inserted as needed. This is clearly illustrated in Lines 10, 20 and 30. Note that
in Line 40 no space was added, since one already existed (between the <T> of NEXT
and the variable L).

Of additional interest is the resulting CLEAR statement in Line 10. Since the
value associated with a MODEL 4 CLEAR statement does not dictate the amount of
string space to allocate, any value following a CLEAR statement will be stripped.

In terms of the feedback given (of possible manual corrections), the following
information would appear on the video as a result of the conversion performed.

The following lines may need manual correction:

30 TAB,TAB

File output completed

Any "fl agged 11 key word (see the list on Page 2) that appears in the program wi 11
be displayed as the output file is being ·created. The number of the line con
taining a flagged key word will be displayed, followed by the key words in
question. If multiple key words are flagged on a line, they will be separated by
commas. In this example, the key words PRINT TAB appeared twice in Line 30. Note
that when TAB appears in a manual correction listing, it is taken to be associ
ated with a PRINT TAB sequence. If TAB is used with an LPRINT statement, no
flagging will occur.

After MOD324 has created the output file, it is the sole responsibility of the
user to make any manual corrections. In this example, the program could be run as
is. However, if any key words were flagged that did not exist in MODEL 4 BASIC
(such as SET), they would have to be removed. Furthermore, if key words were
found that could cause unpredictable results (such as a POKE of video ram), lines
containing these statements would also need to be modified.

MOD324 - 4

BSORT/MOD324 - Copyright 1984 MISOSYS., Inc. All rights reserved

PRINT and WIDTH= Parameters

Depending on the length of the program to be converted, the resulting output on
manual corrections could become quite lengthy. For this reason, the PRINT para
meter has been included. By specifying PRINT, any feedback on possible manual
corrections will be sent to the printer (as well as the video).

If PRINT is specified, the WIDTH= parameter may also be used. This will determine
the number of characters sent to the printer per line. The default value for
WIDTH= is 80. Any value between 9 and 255 may be used.

The printer output will be formatted, so that the line number of a line needing
manual corrections will be printed at position 1 (leftmost part) of the line of
output. The list of key words will begin at print position 7, and continue for as
many key words that exist in the line. If the number of key words to be displayed
on the line would cause the WIDTH to be exceeded, the line will be broken at the
key word preceding the one causing the "wrap around" (if possible). All remaining
key words will then be printed on the next line, starting at print position 7.

Assume it is desired to obtain printed output of possible manual corrections when
converting the program SAMPLE/BAS to SAMPLE/M4. The total length of an output
line is not to exceed 60 characters. The following command will accomplish this.

MOD324 SAMPLE/BAS SAMPLE/M4 (P,W=60

MODIFY and CENTER= Parameters

A definite problem can arise with respect to "screen formatting" when converting
a MODEL III program to run on the MODEL 4. Consider the following (MODEL III)
program, which draws a box on the first 15 lines of the video, prints an inform
ative message on the last line, and blinks a message in the middle of the box.

5 CLEAR 2000
10 CLS
20 PRINT@O,CHR$(151);STRING$(62,13l);CHR$(171)
30 PRINT@64,CHR$(149):PRINT@127,CHR$(170)
40 PRINT@l28,CHR$(149):PRINT@l91,CHR$(170)
50 PRINT@l92,CHR$(149):PRINT@255,CHR$(170)
60 PRINT@256,CHR$(149):PRINT@319,CHR$(170)
70 PRINT@320,CHR$(149):PRINT@383,CHR$(170)
80 PRINT@384,CHR$(149):PRINT@447,CHR$(170)
90 PRINT@448,CHR$(149):PRINT@511,CHR$(170)
100 PRINT@512,CHR$(149):PRINT@575,CHR$(170)
110 PRINT@576,CHR$(149):PRINT@639,CHR$(170)
120 PRINT@640,CHR$(149):PRINT@703,CHR$(170)
130 PRINT@704,CHR$(149):PRINT@767,CHR$(170)
140 PRINT@768,CHR$(149):PRINT@831,CHR$(170)
150 PRINT@832,CHR$(149):PRINT@895,CHR$(170)
170 PRINT@896,CHR$(18l);STRING$(62,176);CHR$(186);
175 PRINT@960, 1111 ;TAB(l5)"Press Any Key to end this Program";
180 PRINT@473,"Center of Box";
190 I$=INKEY$:IFI$<> 1111 THENEND
200 FORL=1T030:NEXTL
210 PRINT@473,"
220 I$=INKEY$:IFI$<> 1111 THENEND
230 FORL=1T020:NEXTL:GOT0180

11.

'

Assuming that this program has been saved as CENTER/BAS, the following conversion

MOD324 - 5

BSORT/M00324 - Copyright 1984 MISOSYS., Inc. All rights reserved

command will produce the feedback output shown.

MOD324 CENTER/BAS CENTER/M4:3

File CENTER/M4:3

The following lines may need manual correction:

20 PRINT@(O)
30 PRINT@(64),PRINT@(l27)
40 PRINT@(128),PRINT@(l91)

150 PRINT@(832),PRINT@(895)
170 PRINT@(896)
175 PRINT@(960),TAB
180 PRINT@(473)
210 PRINT@(473)

In this example, all PRINT@ commands use numeric constants to represent print
positions. The converted program (CENTER/M4) could be run without performing
manual corrections. However, the results would not produce a box on the screen.

In situations similar to this one, the MODIFY parameter may be used. MODIFY will
adjust PRINT@ positions which are represented by numeric constants. The output
program file will contain these adjusted values, and the feedback will show both
the orginal and adjusted values. The original PRINT@ position will be divided by
64 to obtain an integer quotient and remainder. These numbers correspond to the
row and column of the PRINT@ position, offset from 0. The adjusted PRINT@ value
is obtained by multiplying the row value by 80 and adding in the column number.

The following command will perform a conversion of the program CENTER/BAS,
incorporating the MODIFY parameter. The feedback output is shown below.

MOD324 CENTER/BAS CENTER/M4:3 (M)

File CENTER/M4:3

The following lines may need manual correction:

20 PRINT@(O=>O)
30 PRINT@(64=>80),PRINT@(127=>143)
40 PRINT@(l28=>160),PRINT@(191=>223)
50 PRINT@(l92=>240),PRINT@(255=>303)
60 PRINT@(256=>320),PRINT@(319=>383)
70 PRINT@(320=>400),PRINT@(383=>463)
80 PRINT@(384=>480),PRINT@(447=>543)
90 PRINT@(448=>560),PRINT@(511=>623)
100 PRINT@(512=>640),PRINT@(575=>703)
110 PRINT@(576=>720),PRINT@(639=>783)
120 PRINT@(640=>800),PRINT@(703=>863)
130 PRINT@(704=>880),PRINT@(767=>943)
140 PRINT@(768=>960),PRINT@(831=>1023)
150 PRINT@(832=>1040),PRINT@(895=>1103)
170 PRINT@(896=>1120)
175 PRINT@(960=>1200),TAB
180 PRINT@(473=>585)
210 PRINT@(473=>585)

MOD324 - 6

BSORT/MOD324 - Copyright 1984 MISOSYS., Inc. All rights reserved

In examining the adjustments made to Line 40, the original PRINT@ position of 191
was translated into 223 (row 2, column 63). Running the program CENTER/M4 would
cause a box to be drawn on the upper left hand corner of the screen. Manual cor
rection of the program would not be required. Notice that PRINT TAB commands (see
Line 175) are not adjusted in the case of a MODIFY, as they refer to column
position only.

Because the MODEL 4 video is larger than that of the MODEL III, it is possible to
"overlay" a MODEL III screen onto a portion of the MODEL 4 video. The amount of
screen movement available is up to 8 rows, 16 columns. In terms of performing a
program conversion, the CENTER= parameter may be used in conjunction with the
MODIFY parameter, to further adjust PRINT@ positions represented by numeric con
stants. The default value for the CENTER= parameter is 328 (4 rows, 8 columns).

The following command wil 1 perform a conversion of the program CENTER/BAS so that
the "box" will be drawn on the center of the MODEL 4 screen. The resulting feed
back output is shown below.

M0D324 CENTER/BAS CENTER1/M4:3 (M,C)

File CENTER1/M4:3

The following lines may need manual correction:

20 PRINT@(0=>328)
30 PRINT@(64=>408),PRINT@(127=>471)
40 PRINT@(128=>488),PRINT@(l91=>551)
50 PRINT@(l92=>568),PRINT@(255=>631)
60 PRJNT@(256~>648),PRINT@(319=>711)
70 PRINT@(320=>728),PRINT@(383=>791)
80 PRINT@(384=>808),PRINT@(447=>871)
90 PRINT@(448=>888),PRINT@(511=>951)
100 PRINT@(512=>968),PRINT@(575=>1031)
110 PRINT@(576=>1048),PRINT@(639=>1111)
120 PRINT@(640=>1128),PRINT@(703=>1191)
130 PRINT@(704=>1208),PRINT@(767=>1271)
140 PRINT@(768=>1288),PRINT@(831=>1351)
150 PRINT@(832=>1368),PRINT@(895=>1431)
170 PRINT@(896=>1448)
175 PRINT@(960=>1528),TAB(15=>23)
180 PRINT@(473=>913)
210 PRINT@(473=>913)

In examining Line 40, the original PRINT@ position of 191 was translated into
551. The MODIFY value of 223 was first obtained. Then, the CENTER value of 328
was added in, to obtain the final result. Running the program CENTER1/M4 would
cause a box to be drawn in the center of the screen (the upper left corner of the
box is positioned at row 4, column 8). Manual correction of the program would not
be required. Notice that PRINT TAB commands (see Line 175) are adjusted in the
case of a CENTER, as movement of the entire screen affects column positioning.
The value that will be added to numeric constants in PRINT TAB statements is the
column offset (in this example, 8). If zero is used as a column offset (i.e. if
CENTER=80, 160, 240, etc.), PRINT TABs will not be adjusted by CENTER.

When using the CENTER= parameter, the MODIFY parameter must also be specified for
any adjustments to occur. Although any value may be used with CENTER=, some
values (e.g. CENTER=99) will produce undesireable results. Offsets of more than 8
rows and/or 16 columns should be avoided. The following table lists the CENTER=
value ranges that make the most practical sense.

MOD324 - 7

BSORT/M0D324 - Copyright 1984 MISOSYS •• Inc. All rights reserved

CENTER= Range
0-16

Row Offset
0

80-96
160-176
240-256
320-336
400-416
480-496
560-576
640-656

Miscellaneous •Feedback• Information

1
2
3
4
5
6
7
8

When PRINT@ and PRINT TAB statements utilize numeric expressions as print posi
tion values, adjustments to the positioning values will not be made. However, the
feedback associated with such commands will indicate that the print positioning
value is a numeric expression. Consider the following MODEL III program
(CNTLOOP/BAS) which will draw a box on the video via a FOR-NEXT loop.

5 CLEAR 2000
10 CLS
20 PRINT@O,CHR$(15l);STRING$(62,13l);CHR$(171)
25 FORL=lT013:Al=L*64:PRINT@Al,CHR$(149):PRINT@Al+63,CHR$(170):NEXTL
170 PRINT@896,CHR$(18l);STRING$(62,176);CHR$(186);
172 MC$="Center of Box":MB$="Press Any Key to end this Program"
174 Ml=LEN(MC$):M2=LEN(MB$):CM=7*64+((64-Ml)/2)
175 PRINT@960,"";TAB((64-M2)/2);MB$;
180 PRINT@CM,MC$;
190 I$=INKEY$:IFI$<>""THENEND
200 FORL=1T030:NEXTL
210 PRINT@CM,STRING$(Ml,32);
220 I$=INKEY$:IFI$<>""THENEND
230 FORL=lT020:NEXTL:GOT0180

The following command can be used to convert this program, with the resulting
feedback output shown below.

MOD324 CNTLOOP/BAS CNTLOOP/M4:3 (M.C)

File CNTLOOP/M4:3

The following lines may need manual correction:

20 PRINT@(0=>328)
25 PRINT@(EXP),PRINT@(EXP)
170 PRINT@(896=>1448)
175 PRINT@(960=>1528),TAB(EXP)
180 PRINT@(EXP)
210 PRINT@(EXP)

Notice that an adjustment did occur in Line 20. However, in Line 25 the print
position was specified as a numeric expression. In this case, an adjustment is
not made to Line 25 in the output filespec (converted program). Rather, the
feedback message associated with the PRINT@ statement indicates that an expres
sion (EXP) follows the PRINT@. PRINT@(EXP) will always be displayed (regardless
of the conversion parameters specified) when a numeric expression follows a
PRINT@ statement.

MOD324 -,8
'

BSORT/MOD324 - Copyright 1984 MISOSYS., Inc. All rights reserved

The same type of feedback will occur with PRINT TAB statements. This will happen
when a column offset is dictated by the CENTER parameter, and a numeric expres
sion denotes the tab position (see Line 175).

Due to the expansion that takes place during a program conversion (e.g. spaces
being inserted}, it may be necessary for MOD324 to trucate a program line. Line
truncation is done so that the resulting program file may be loaded into memory
by MODEL 4 BASIC. When a line is truncated, as much of the line as possible is
stored in the output program file, and a feedback message shows the part of the
line that was truncated.

As an example, assume that the following line exists in a MODEL III program file.

10 FORLL=lT010:FORLK=lT020:FORLP=lT030:LPRINTTAB(20}"This is an example of a
converted line being too long":LPRINTTAB(20}"The value of LL is";LL:
LPRINTTAB(20}"The value of lk is";LK:LPRINTTAB(20}"The value of LP is";
LP:NEXTLP:NEXTLK:NEXTLL:PRINTTAB(20}"Done"

Consider the results of performing a conversion of this line, as shown below
(shown first is the line as it would be saved to the output filespec, followed by
the feedback message that would be generated}.

10 FOR LL=l TO 10:FOR LK=l TO 20:FOR LP=l TO 30:LPRINT TAB(20}"This is an
example of a converted line being too long":LPRINT TAB(20}"The value of
LL is";LL:LPRINT TAB(20)"The value of lk is";LK:LPRINT TAB(20}"The value
of LP is";LP:NEXT LP:NEXT LK:NEX

The following lines may need manual correction:

10 TAB
10 - Line truncated, should be extended as follows:
T LL:PRINT TAB(20)"Done"

Of interest in this example is the ending part of the line in the output file and
the information in the "Line Truncated" feedback meesage. Note that any part of
the program line that could not get written to the output file'is displayed in
the feedback message.

One last point which needs to be mentioned concerns the use of IF-THEN state
ments. In a MODEL III program, the following type of statement is allowable, and
would function without error.

IF A=l A=2

In this case, THEN is implied. However, using this type of implied THEN statement
on the MODEL 4 would generate a syntax error. For this reason, MOD324 will flag
any IF statement which is not followed by a THEN.

MOD324 - 9

Logical Systems Incorporated

The Help Systems

T A B L E 0 F C O N T E N T S

Introduction ••••••••.••••••••.•••••.•••••••••••.••••• page 1

Warranty ••••••••••• • ••••••• page 1

Overview •••••••••••••..•••....•..•..••••••••••••••••• page 2

HELP/CMD ••••••••••.•••••...•••.••••.••••••••••••••••• page 3

HELPRE Sx/ CMO • .•• • •••••••••••••••••••••••••••••••••••• page 6

HELPGEN/CMO •••.••••••.•••••••.•••••••.••••••••••••••• page 9

Appendix A ••• page 12

Appendix B .•••••••••.••.••.••.•••.•.•••••••.•••••••.• page 13

Appendix C •.••• page 17

Ihe LOOS HELP Systems

Introduction

This documentation covers all three HELP packages. Certain pages may not pertain to
the individual package which you have purchased.

For a listing of the programs which should be contained on each package, refer to
Appendix A of this manual.

The documentation additionally covers all three packages on two different operating
systems, LOOS 5.1.3 and LOOS 6.1. Therefore, certain paragraphs will be different for
each version. When this occurs, it will be prefaced by the appropriate version number.
Please do not make the mistake of assuming that the sections which do not pertain to
your specific version are relevant.

The reason for their inclusion is so that you may, at no additional expense, see
exactly what the other packages are like.

W, A B B A N T Y
All products sold by Logical Systems Incorporated, hereinafter referred to as LSI,
grant the user certain customer support privileges. This support shall be limited to
the privilege of having the master diskette updated as often as desired for the
current update fee. This is limited to updates within the current Series of the
program. LSI will also provide a lifetime warranty on the physical diskette media of
the original serialized master diskette. If the diskette media physically fans to
retain the original program, replacement media will be provided at no charge. This
does not include media that has been damaged in shipment from the user to LSI, or
media that has been damaged by the user or their equipment. To receive this support,
the user MUST f i 11 out and return a specific registration card pertaining to the
product, within 30 days of purchase. Should a user find a val id error in the program
and clearly define it in writing to LSI, every effort will be made to correct the
error. All support shall apply only to registered owners.

logical Systems Incorporated and its associates assume no liability whatsoever, with
regard to the rel i abi 1 i ty and/or fitness of their products. All data entrusted to
these programs and the computer that it is operating on are the sole responsibility of
the user. Under no circumstances will LSI or its associates be held liable for the
loss of TIME. DATA, PROGRAMS or for any consequential damages incurred by the user.

This manual, as wel 1 as the accompanying programs and data files, are Copyr~ghted c
by Logical Systems, Incorporated, all rights RESERVED. Reproduction. by any means, and
distribution is hereby forbidden except by written consent.

For additional information, please contact:

Logical Systems Incorporated
P.O Box 23956

8970 N. 55th Street
Milwaukee. Wisconsin 53223

(414) 355-5454

LOOS He1p System
Page 1

HELP §Y§JEM
The Help System Utility is designed to convert any type of textual information into a
read i 1 y accessed file which can then be displayed to the video screen. It is designed
to be implemented either as a stand alone application, or from within a calling
program. The Help system is comprised of the following Modules:

1. HELP/CMD This program is the stand alone Help module which is
invoked from the LOOS Ready prompt, or from within
1 anguages or programs that allow system conmands to be
exe~uted.

2. HELPRES/CMO This program resides the HELP System fn high memory so
that it may be accessed by applications which do not
normally provide access to LOOS system functions.

3. HELPGEN/CMO This program converts any suitably structured ASCII file
into a data file capable of being acted upon by the HELP
System.

4. LOOS/HLP This data file contains help for most of the LOOS library
commands and utilities.

5. LBASIC/HLP This data file contains help for LBASIC commands and
functions.

6. 28(/JA/HLP This data file contains help for Zilog Z-80 mnemonics
which start with the letters 11 A11 through "L". Included
information is: flags affected, opcode, timings and
definitions of operations.

7. Z8f/JM/HLP This data file contains the rest of the Zilog Z-80
mnemonics starting with the letters 11 M11 through 11 X11 •

8. TECHl/HLP This is a reproduction of most of the information
contained in the Technical section of the LOOS owner's
manual. It contains information up to the System Entry
Points section.

9. TECH2/HLP This is the rest of the information contained in the
Technical Section of the LOOS owner's manual.

The following conventions are used in this manual:

<> Encloses literal keyboard characters. <ENTER> is used to signify
that the Enter key should be pressed. <BREAK> indicates depression
of the Break key.

fs Refers to a full LOOS standard file specification (filespec).
ds Refers to an LOOS drive specification (drivespec).
fn Refers to that part of a fi lespec which precedes the slash

character (filename).
kw A keyword used to find a specific area of HELP.
p An optional parameter.

After purchasing the HELP system:
First, make two BACKUPS of the Master Diskette enclosed with the system. These
diskettes should be used to generate future backups with the Master held as an
ultimate reserve.

For the sake of "elbow room", it may be necessary to copy the files desired to various
diskettes. The following chart gives the approximate length of the programs and data
files: (The second number is for equivalent 6.1 files.)

File
LBASIC/HLP
LDOS/HLP
TECHl/HLP
TECH2/HLP
Z8f/JA/HLP
Z8(1JM/HLP

Help File Length Source File Lenith
24,871 [22,626] 30,208 [29,18 J bytes
47,851 [37,963] 57,856 [49,152] bytes
54,498 [40,044] 68,864 [48,640] bytes
50,016 [45,908] 60,672 [55,552] bytes
46,431 [46,842] 62,464 [62,976] bytes
28,834 [29,020] 40,704 [40,960] bytes

LOOS Help System
Page 2

The actual HELP system display modules occupy the fo11owing space

HELP/CMD
HELPRESl/CMD
HELPRES2/CMD
HELPGEN/CMO

4,044 [4,837] bytes
3,569 [3,592] bytes
4,409 [4,386] bytes
3,674 [3,565] bytes

Distribution of user created files generated by HELPGEN/CMO are subject to the whim
of the user, provided.Togical Systems, Inc. is acknowledged. All files provided on the
Master diskette are copyrighted including both HELP display modules. Those persons
wishing to implement the HELP System in any distribution of their own sho1..i'ld contact
LSI at the address provided, concerning fees and contractual obligations.

Copyright c 1983 by Logical Systems, Inc.
P ,0. Box 23956

8970 N. 55th Street
Milwaukee. Wisconsin 53225

(414) 355 •. 5454

This wi 11 probably be the most common use of the Help System. To obtain HELP from LDOS
Ready, type the following:

HELP fn kw (p,p) <ENTER>

Where fn is the database filename to be searched, kw is the keyword desired in that
file, and p represents any optional parameters.

For example, at LOOS Ready type:

HELP LOOS LIB <ENTER>

This wi 11 now open the fi1e called LOOS/HLP~ and display the information filed under
the keyword 11 LI8 11 • The video display wi11 remain until any cha.racter generating key is
depressed. If there 1s more informa.tion about the keyword than would fit on one
screen, pressing a key wi11 cause more information to display and, ·if necessary, pause
repeatedly until the information is exhausted. At that timei the video display is
restored and contro1 wil 1 be returned to LDOS.

To inspect al 1 the keywords conta.ined with'ln a file, type:

HEU" f n <ENTER>

This will list a11 of the keywords within the named file. If the previous example had
been "HELP LOOS <ENTER• 11 , a list of the available keywords would have been disp1ayed.
Once again. the display will pause 1f necessary. After each screenfu11 of keywords,
the prompt 11 <ENTER>, <BREAK>. or type keyword?" wi"l1 appear. At this time. if <ENTER>
is pressed, the next screenfu11 of keywords will be displayed. If <BREAK> is pressed,
HELP wi 11 abort. and control wi11 n:turn to LOOS. A keyword may be entered, and the
information relating to that keyword wn1 be displa.yed,

If the specified keyword was not ·in the ca.l1ed file, the list of all keywords would
display again, to indicate what was availab)e within that file,

The entire command sequence can be entered in either upper or lower c,ise.

LOOS Help System
Page 3

To list all of the help files presently available on the system, merely type:

HELP <ENTER>

This wi 11 search all drives on line for files ending in the /HLP extension, and list
them to the video display. For example,

Help Categories presently on line are:

Z80A/HLP:l
TECH2/HLP:3

Z80M/HLP:l
TECHl/HLP:3

LOOS/HLP:l LBASIC/HLP:1

Press ENTER to exit or enter category

The function of the HELP command may be altered by specifying one or more of the
following optional parameters:

P This parameter sends the output to the *PR device {usually a
printer) as well as the video. While using this option, the display
wi 11 not pause if filled. Since all characters are being sent to
the *PR device, no pause 1s required.

V This parameter causes the video restoration feature to be
cancelled. If not specified, the screen will be returned to the
same condition as it was when HELP was invoked, less the help
command itse 1f.

B [5.1 Only) This parameter causes the blink feature to be cancelled.
Various characters can be made to flash in the video display by
spec if y i n g them as b 1 inking characters during creation of the data
file. However, if HELP were invoked while in a communications mode,
a continuous stream of characters would be sent from the host
machine to the terminal. The B parameter alleviates this
difficulty.

R [6.1 Only] This parameter causes the reverse video option to be
cancelled. Various phrases can be displayed in a reverse video mode
if so specified in the creation of the data file. However, certain
terminals utilize the characters involved and unpredictable results
can occur while in the communications mode. The R parameter
alleviates this difficulty.

S This parameter causes the Search mode to be entered. Typing:

HELP LOOS O (S)

would cause a listing of all keywords starting with uou to be
displayed rather than the entire list. The potential match should
be the left most characters of a keyword. By specifying "DI", all
keywords starting with "DI" would be displayed.

LOOS Help System
Page 4

Besides use at LOOS Ready, the same command sequence may be employed within LBASIC by
utilizing the CMD 11 exp 11 function. A user application could be written to invoke help
as an operator choice from a menu or command line. For example, CMD"HELP LOOS
FILESPEC" might be invoked by the application program if it detected an invalid
file spec entry by the operator. HELP requires about 5 K of free memory to function.
Al 1 system memory guides are followed, and the HELP system will abort if sufficient
memory is not available.

Another example of a cal 1 from LBASIC might be: CMD"HELP LBASIC LSET" which will
function (memory permitting) as described above, and would return control to LBASIC.

HELP/CMD also allows a 11 global 11 scan for any on-line keyword. If the keyword 11 MEMORY 11

was known, but the file is unknown (or to save typing in the filename). then enter an
asterisk (*) followed by the keyword in the help command line. For example,

HELP *MEK>RY

would find the first occurrence of the keyword 11 MEMORY 11 in any /HLP file. The top of
the screen displays the category being scanned while a global search is in progress.
If the key is found, the text displays normally. At the end of the text, the prompt
"Press <BREAK> to exit or <ENTER> to continue global scan 11 appears. Pressing <ENTER>
wi 11 look for the same keyword in another file until all /HLP files have been
examined. Upon completion of the scan, or if no match is found, the normal prompt for
category selection will appear. Continue as desired by pressing <BREAK> or <ENTER> to
return to LOOS Ready or by typing in a category name to obtain the directory for that
file.

LOOS Help System
Page 5

HELPRESl/CMD or HELPRES2/CMD are similar in execution to HELP/CMO, but are filters
that reside in high memory. This is so that applications programs which do not provide
system access for LOOS commands MAY be able to call help from within. The difference
between programs where HELPRESx/CMD wi11 work and will not depends entirely on the
calling program. In order to work, the target program must:

A. Respect certain LOOS (and good programming) practices by respecting
high memory modules. This means that almost any uncomplicated BASIC
program would work because the code w111 not allow memory usage
above the HIGH$ limit. .

B. Must not use internal drivers for keyboard or video that cause the
existing drivers to be ignored or unpredictable results can occur.

c. Must allow sufficient memory space for HELPRESx/CMO to function.
o. As a rule of thumb, genera11y, any program which al lows use of

the MINIDOS fi1ter will work with HELPRES.

Unfortunately, LSI does not have the resources to make this determination on the
thousands of programs available. It is simply not possible to deduce what logic each
programmer utilized. Therefore, it is left up to the user to determine HELP's
compatibility with existing software.

Fortunately, no harm can corne of experimentation-- provided it is not done on the only
existing copy of anything.

The difference between HELPRESl/CMD and HELPRES2/CMD is that HELPRESl is able to
display exactly one file and HELPRES2 can display from one through fifteen files
simultaneously. Why are both included? HELPRESl/CMD needs 1740 [1856] bytes minimum
while HELPRES2 requires 2025 [2127] bytes minimum.

To reside HELP in memory. the LOOS *KI driver MUST be active (LOOS 6.1 always has this
active). If it is. type the fo 11 owing:

HELPRESx/CMD (p,p)

at the LOOS Ready prompt. where x is either 1 or 2.

Parameter Functions:

V The V parameter wi 11 turn on or off the video restoration
opt ion. When off, screen restoration becomes the responsibility
of the interrupted program. Programs such as Scripsit, or EDAS,
can redraw the video disp°lay quite readily. Others, such as
BASIC programs. were probably not written to refresh the screen
while operating. Besides inherent program factors, keep in mind
that the video refresh option requires an additional block of
memory which equals the maximum number of characters contained
on the video. For 16x64 screens this would be 1024 bytes, and
for 80x24 screens this would be 1920 bytes. Once the V option
is selected one way or the other it cannot be changed unless a
reset is performed on the *KI device.

IMPORTANT NOTE

THE DEFAULT FOR HELP/CMD HAS THE VIDEO RESTORATION DEFAULTED TO "ON". IN THE
INTEREST OF SAVING M£MOih. HOWEVER, THE HELPRES/CMD MODULE ASSUMES THE VIDEO
RESTORATION TO BE "OFF". The V parameter will REVtRS~ £fie default condition!

LOOS Help System
Page 6

B [5.1 Only] The 11 B11 parameter will specify a maximum number of
characters to blink per screen. Specifying 11 B=l11J 11 would,
therefore, al low no more than ten blinking characters per
screen. In the interest of memory management, be advised that
each blinking character reserved, occupies 3 bytes of memory. A
11 B•l(IJ 11 wi 11 occupy 311 more bytes of high memory than having no
11 B • 11 i n the command line. A maximum of 255 b 1 inking characters
may be specified by the B parameter. The default option is B=0,
so that if no blink option is desired the user need not enter
the parameter at all.

R [6.1 Only] Cancels reverse video just as it does for HELP/CMD

FILE HELPRESl/CMD requires a parameter of "FILE=". Unlike HELP/CHO,
the filter may only look through 1 file at a time. To specify
the LDOS/HLP file type, HELPRESl (FILE••Ll)()S•). To change
files after the filter is loaded, simply type another line at
LOOS Ready with a different FILE• specified. The HELP filter
wi 11 automatically substitute another file in the same memory
location. The 11 FILE• 11 parameter must be specified for the
resident module to work. A prompt will be issued demanding a
file name if none is supplied or if an illegal filespec was
entered. Entering a non-existent file name will abort the load.
The FILE parameter may be abbreviated by its first letter 11 F11 •

FILE HELPRES2/CMD requires a parameter of 11 FILE•x", where xis a
number from 1 through 15. HELPRES2 will then ask for each
filename. It is also possible to use this parameter exactly as
is done for HELPRESl. In this case, only one file is allowed.
The abbreviation is 11 F11 •

DISABLE This parameter is used to cancel the filter. If either HELPRES
is the last filter appended to the *KI device, it will
disengage and cease functioning. Furthermore, if it is the last
high memory module in place, 1t will release the occupied
memory. Because of this feature, HELPRES should be last.
"DISABLE" may be abbreviated with 11 D11 •

To access the HELP System with HELPRES/CMD active, generate a <CLEAR><SHIFT><H> from
the keyboard. Th is is accomplished by depressing the <CLEAR> key, then the <SHIFT>
key, and finally the <H> key.

In HELPRESl :
The video will prompt with "filespec Help: <BREAK>,<ENTER> or type keyword". Enter the
keyword sequence desired, and the screen wi 11 display the 1 nformation. If a
non-existent keyword was requested, a list of available keywords will be displayed.
Pressing <ENTER> will either display the file directory of keywords or continue one in
progress. <BREAK> is pressed to return to the calling program. The video display will
not be restored unless 11 V11 was specified at the conwnand line during start up.

In HELPRES2:
The video will prompt with a "filespec Help: <CLR>,<BRK>,<ENT> or type keyword". Enter
the keyword sequence desired, and the screen will display the information. If a
non-existent keyword was requested, a list of available keywords will be displayed.
Pressing <ENTER> will either display the file directory of keywords or continue one in
progress. <SHIFT><CLEAR> is pressed to swap the active file with a dormant file. This
wi 11 cause the II Select New Category" prompt to appear. If the resident files are
forgotten, press <ENTER> and the list of files specified at start up will display and
the "Select" prompt repeated. Type a category name or press <SHIFT><CLEAR> to return
to the normal prompt. <BREAK> is pressed to return to the calling program from either
keyword or category select. The video display will not be restored unless "V" was
specified at the conwnand line during start up.

LOOS Help System
Page 7

Some problems may occur with either resident help system if certain guidelines are not
fol lowed.

The resident "helps" work by opening files on the disks. In the interest of shortening
code, files are not opened and closed ·in high memory. Instead, a pointer is kept to
the known position on a specific drive of a given file. Therefore. if a diskette
containing an opened help data file (!HLP) is removed, it follows that the resident
module is now dealing with erroneous information and unpredictable results will surely
occur. REMEMBER to DI SABLE either HELPRES program before exchanging or removing
diskettes.

Because the resident helps are rather large, every effort has been made to make them
convenient. Normally, a high memory module can neither be disengaged from the modified
device without a RESET of the device, nor can the HIGH$ pointer be re-routed to
release the occupied memory without a BOOT. If either HELPRES is used with the 11 D"
parameter then both can be achieved if this filter was the LAST high memory module
loaded and/or the LAST device modifier for the Keyboard (*KI).

Placing another filter below HELPRES will circumvent memory release because the lower
module would then be unprotected in memory. If the latter condition occurs, HELPRES
might unchain itself from the keyboard but still be resident in memory because of the
"trap" set by the user.

If at that point. the SAME HELPRES is re-activated, the 11 trapped" code win
re-activate rather than grabbing another swath of memory. If the opposite module is
loaded, it wi 11 NOT use the same space. To utilize this re-activate feature, proceed
as if swapping a file.

If a *KI modifier is loaded after either HELPRES, then it is, of course, impossible to
either unchain or release memory.

If it is desired to use another file instead of the file in memory, file swapping
occurs as follows. Proceed as if the HELPRES is being used for the first time. It will
detect its presence in memory and replace the file used now with the previously used
file. However. ALL PARAMETERS except for the single replacement filename will remain
as they were from the original installation. Note that HELPRESl (F="newname") will
replace the old file w'lth the current file, but that B or R, and V will not be
affected.

HELPRES2 works almost the same way. Only the "active" file (the one currently pointed
to which is on the prompt line) can be replaced. To replace a 11 dormant" file, activate
it with <SHIFT><CLEAR> from within the filter and then replace it. Again, other
installation conditions (as well as all dormant files) are not affected.

For example, suppose that HELPRES?. is initialized with the files LOOS and LBASIC. When
the program is entered the prompt says 11 LDOS Help 11 etc. To replace the LOOS file with
Z80A type, HELPRES2 (F•uZ80A"). at LOOS Ready. Now the filter is set for Z80A and
LBASIC. To replace LBASIC, enter the program and switch LBASIC to an active state by
us i n g the <SH r Fr>< CL EAR> sequence. Return to LOOS Ready and type the proper command
sequenct~. 1f large numbers of files are to be replaced, it may be more efficient to
disable the resident module and re-initialize it rather than continuously rotating
files and returning to LOOS Ready.

The runtimE• length of each module is approximately:

5.1 Versions
HELPRESl 1740 bytes+ 3 bytes/blink allowance+ 1024 bytes with video restoration
HELPRES2 2025 bytes+ blink+ video+ 41 bytes/file> l

6.1 Versions
HELPRESl 1856 bytes+ 1920 bytes with video restoration
HELPRES2 2127 bytes+ video+ 41 bytes/file> 1

LOOS Help System
Page 8

HELPG!;N/Cf:1D
This module is a text processor which turns a file created under some type of text
editor (WordStar,LEO etc) into a data file which can be used by the HELP System. The
file to be processed must be an ASCII file. Some text editors or word processors
automatically save in ASCII while others use a non-standard, variable, compressed data
storage format. For the latter reason. decoding for HELP is only done on the
characters having an ASCII value of less than 128. The maximum destination file
allowed is 65,535 bytes.

If 11 HELPGEN P11 is specified at LOOS Ready, an alphabetical list of keywords found in
the text file wi11 be sent to the 11ne printer.

The rules concerning creation of a source file to be processed by HELPGEN are as
fo 1 lows:

1. The first character of the file will be taken to be the first
character of the first keyword. If this is a control character such
as a carriage return or any other character with an ASCII value of
less than 32. the processor wi11 abort. If it is any
non-alphanumeric character it will become part of the keyword. Be
certain that the first character of the file is supposed to be the
first character of the first keyword.

2. The 11 keyword 11 will continue until a carriage return <ENTER>
character is encountered. NO other character will terminat,e a
keyword. Thus, if the first sequence of characters were
11 SYNTAX<ENTER> 11 , the keyword would be 11 SYNTAX". If the sequence
were "LBASIC SYNTAX<ENTER> 11 , the keyword would be 11 LBASIC SYNTAX".
The keywords are used to access the file information as in "HELP
LOOS S YNTAX 11 or 11 HELP LBASIC LBASIC SYNTAX" in the case of the two
examples. The "keyword" should be chosen with this in mind,
Alphabetic characters in the keyword will be converted to upper
case in the index (HELP LOOS <ENTER> display). A keyword phrase may
not exceed video line width less 14 characters. One further point
on keyword length. Since the file directory prints a total list of
keys for a file, long keys make the video display look sloppy.

3. Next. type in text as normal. This will become the information
which displays when HELP fn kw is invoked. No line should exceed
video width. For the most part, type the text exactly as it is
desired to appear. A carriage return is not necessary after each
line of text, however, remember that in that case, word location
may not be the same as in the text editor.

4. [OPTIONAL 5.1 only] In the case of the LOOS/HLP file, blinking
characters are used to signify abbreviations of parameter.s.
B 1 inking ch a r a c ters provide emphasis for whatever reason desired.
To make a character blink, type an ASCII value (127) immediately in
front of the character desired. An ASCII 127 can be produced with
the LOOS KI driver active by generating a <CLEAR><SHIFT><ENTER>. On
Model I, the character is a block of dots, while in Model III it is
a pl us mark over an under1 i ne character. When output to the
display, this character will be DROPPED from the display and the
rest of the line will be moved one position to the 1eft. Keep this
i n mi nd if co 1 umn position 1 ng is desired. Examine the proper use of
this feature by observing it in the SAMPLE/TXT file. Many
characters may be flashed 'in any single screen. Keep in mind that
too many b 1 inking characters car. be aggravating to read. Also, if
the text file is to be used in the filter mode, remember that a
flashing character requires 3 bytes of memory.

LOOS Help System
Page 9

4. [OPTIONAL 6.1 Only] Reverse Video may be used to provide emphasis.
In the case of the LDOS/HLP file, reverse characters are used to
signify that part of a parameter which can be used as an
abbreviation. Reverse video for one or more characters is specified
by typing an ASCII 127 character immediately preceding the the
first character to reverse, and another ASCII 127 immediately after
the last character to reverse. An ASCII 127 is generated by
pressing <CLEAR><SH I FT><ENTER>. The character appears as a plus
mark on top of an underline.

5. End text entry for any given keyword's text by typing an ASCII 12.
The next group of characters will then be another keyword. End this
key with a carriage return and proceed to type more text. If there
is no more information to fol low, then the ASCII 12 should be the
last character of the text file.

6. [OPTIONAL] If 1t 1s desired to have more than one key access the
same text ("KEY STROKE MULTIPLY" and "KSM", for example) then
type an ASCII value (12) character immediately after the carriage
return of the previous keyword. The next sequence of characters
wi 11 al so become a keyword. This process may be used indefinitely.
This wou 1 d al low thousands of keys to access the same information.
This is useful to provide for abbreviated keys (SYN and SYNTAX, EXT
and EXTENSIONS, etc.), so that HELP LOOS SYN and HELP LOOS SYNTAX
would have the same result. {Note that the LOOS/HLP file is done
this way.). ASCII 12 is also sometimes cal led a forced end of page
or top-of-form, or form-feed. Refer to the example in the
SAMPL{/TXT file.

7. Repeat steps one through six until the source file is complete. The
HELPGEN program compresses out- spaces in the text and sorts the
keywords automatically so no particular attention to the order of
keywords and text need be observed. Because of space compression,
source files longer than 65,535 characters can be processed.
Average storage saved is about 2f/J%.

8. Save the text file using an ASCII format. Be sure to specify ASCII,
if it is an option on the text editor utilized.

9. Exit the text editor.

At this point, the text file is ready, and now must be processed for use by the HELP
Display system, be it HELP or HELPRESx.

A. At LOOS Ready, type HELPGEN (or HELPGEN P).

B. HELPGEN will prompt for the source filespec. This is the ASCII file
which was generated in step 8.

C. HELPGEN wi 11 prompt for the HELP filename. Type in up to eight
alphanumeric characters with the first character being alphabetic.
The f i 1 e wi 11 be ASSIGNED an ex tens ion of /HLP. Keep in mind that
the name wi 11 constantly be used as part of the command line, and
that the shorter it is, the easier it will be to use.

D. If the file exists, a prompt will appear asking permission to
overwrite the file. If the response is negative, the system will
prompt for the filename again.

E. Pressing <BREAK> in response to any prompt will abort the sequence.

LOOS Help System
Page lf/J

SAMPLE/TXT is provided on the HELP Generator package to be an example of a proper
source text. The user may w1 sh to process this text as is. and then modify it to
become familiar with the process. The source texts for the other HELP packages are
also available should the user desire to alter or add to them.

Listed below are the error messages which may occur during processing. Any LOOS system
errors incurred are explained in the LOOS manual.

Improper Source Filename
A source file which did not meet LOOS filespec standards was entered. A re-prompt for
another filespec will occur.

Duplicate keys Encountered
Two i dent i cal keywords were found. No recovery-- system aborts after displaying the
duplicate key. Edit the text file and reprocess.

Keyword exceeds maximum allowable length
Be sure that a carriage return was used within the allowable maximum key length (video
width less 14 characters). No recovery-- system aborts. Edit the text file and
reprocess.

Memory overlap has occurred due to too many keys
The keyword 11st is too long to fit into available memory. No recovery-- system
aborts. In borderline cases. releasing more high memory may help. It may be necessary
to divide the source file. ·

Same Source and destination file
No recovery-- system aborts. Use a different destination filespec.

Null key Encountered - Prior key was xxx
A keyword contained no characters. which makes it rather tough to find. The Previous
key (if any) is displayed to assist in the location of the offender. Normally. this is
just a stray carriage return. Edit the source file and reprocess.

Destination File Exceeds 65.535 characters
No recovery - system aborts. Divide the source and process into two destination files.
64K is the maximum number allowed in the destination file. The source file may be any
length because spaces are compressed out.

LOOS Help System
Page 11

LOOS HELP

Appendix A ~ - Files Included

{Cat f's L-30-060 (5.1), L-30-061 (6.1)}

LOOS/HLP
LBASIC/HLP

HELP/CMD
HELPRESl/CMO
HELPRES2/CMD

Technical HELP* - - {Cat #'s L-30-080 (5.1), L-30-081 (6.1)}

Z80A/HLP
Z80M/HLP

TECHl/HLP
TECH2/HLP

HELP/CMD
HELPRESl/CMD
HELPRES2/CMD

*REQUIRES at least two double density drives.

HELP Generator - - {Cat f's L-30-070 (5.1), L-30-071 (6.1)}

HELPGEN/CMD
HELP/CMD

HELPRESl/CMD
HELPRES2/CMD

SAMPLE/TXT

HELP text source* - - {Cat f's L-31-010 (5.1), L-31-020 (6.1)}

Z80A/TXT, 280B/TXT, Z80C/TXT
ZB0D/TXT, Z80E/TXT

TECHl/TXT, TECH2/TXT, TECH3/TXT, TECH4/TXT, TECH5A/TXT
TECHSB/TXT, TECH6/TXT. TECH7/TXT, TECHB/TXT

LOOSl/TXT, LDOS2/TXT, LDOS3/TXT
LBASIClH/TXT, LBASIC2H,TXT

l/J0A, B, and C are APPENDed to form Z80A and Z80D and E form 280M. TECHl is
concantenated from TECHS 1, 2. 3, 41 and 5A. TECH2 is comprised of 5B, 6, 7, and 8.
LOOS is derived by appending LDOSl, 2, and 3. LBASIC comes from LBASIClH and 2H.

*REQUIRES at least two double density drives.

NOTE : On LOOS HELP 6.1 the file SASIC/HLP is substituted for LBASIC/HLP and
BASlCl/TXT, BASIC2/TXT are substituted for LBASIClH/TXT and LBASIC2H/TXT respectively,
in the L-31-020 package.

LOOS He1p System
Page 12

Appendix B - - Keywords in the 5.1 Data Files

Help System Display Mode Version 5.1
Copyright (c) 1983 by Logical Systems, Inc.

Directory for HELP file LBASIC

&H &O CLOSE
CMD"*" CMD"A" CMD"B"
CMD"E" CMD"I" CMD"L"
CMD"N" CMO"O" CMD"P"
CMD"S" CMD"T" CMD"X"
CV I CVS DEF FN
EOF FIELD GET
INSTR ERRORS KILL
LINE INPUT LINE INPUT# LOAD
LOF LSET MERGE
MKD$ MKI$ MKS$
OPEN PRINT# PRINT# USING
RESTORE RSET RUN
SET EOF TI ME$ USR
Press <BREAK>,<ENTER> or type keyword

Help System Display Mode Version 5.1
Copyright (c) 1983 by Logical Systems, Inc.

Directory for HELP file : LOOS

APPEND ATTRIB AUTO
BOOT BUILD CLOCK
COPY COPY238/BAS CREATE
DEBUG DEBUG D DEBUG DISK
DEBUG EXTENDED DEVICE DEVICES
DO DUMP EXT

. FILES FILTER FORMAT
HITAPE JL JOBLOG
KEY STROKE MULTIPLY KI/DVR
KSM LCOMM LIB
LIST LOAD LOG
MINIDOS MINIDOS/FL T PASSWORDS
PDUBL PR/FLT PURGE
RENAME REPAIR RESET
RS232X/DVR RUN SET
SYN SYNTAX SYS ALIVE
SYS BLINK SYS BREAK SYS BSTEP
SYS DRIVE SYS FAST SYS GRAPHIC
SYS SVC SYS SYSGEN SYS SYSRES
SYS TYPE SYS UPDATE SYSTEM
TRACE TWOSIDE VERIFY
Press <BREAK>,<ENTER> or type keyword

CMD
CMO"D"
CMD 11 LDOS 11

CM0 11 R11

cvo
DEFUSR
INPUT
LBASIC ENTRY
LOC
MID$=
NPARMS
PUT
SAVE
XPARMS

BACKUP
CONV
DATE
DEBUG E
DIR
EXTENSIONS ,
FREE

KILL
LINK
MEMORY
PATCH
RDUBL
ROUTE
SPOOL
SYS BASIC2
SYS DATE
SYS SLOW
SYS TIME
TIME

LOOS Help System
Page 13

Appendix B - - Keywords in the 5.1 Data Files

Ht!lp System Display Mode Version 5.1
Copyright (c) 1983 by Logical Systems. Inc.

Directory for HELP file : Z80A

AOC /\, S
ADO A, (f Y+D)
ADD IX.RR
BIT B, (Ml)
CALL
CPD
CPL
O[C M
EI
ex AF .Ar'
FLAGS
!M 2
INC (lX+D)
!NCR
INI
,Jp (IX)
,JR C, E
LO (Hl) ,R
LO (IY+D) ,R
LD (NN),IX
LD A,(NN)
LD 00,NN
L D IX, NN
LO R, (IX+O)
LD R,R'
U)O

AOC HL,SS
/\DD A,N
ADD IY.RR
BIT 8, (IX+D)
CALL C,P
CPDR
OAA
DEC RR
EX (SP) ,HL
EX OE,HL
HALT
[NA,(N)
INC (IY+D)
INC RR
INIR
JP (I Y)
LD (BC) ,A
LD (IX+D) ,N
L D (NN) ,A
LO (NN),IY
LO A, I
LO Hl, (NN)
LD IY. (NN)
LD R, {!Y+O)
LO SP,HL
LDOR

ADD A, (HU
ADD A,R
ANO
BIT 8, (IY+D)
CCF
CPI
DEC IX
DI
EX (SP),IX
EXX
IM 0
IN R,(C)
INC IX
INO
JP
JP C,P
LO (D£),A
LO (IX+O) ,R
LD (NN),DD
LD A~(BC)
LO A,R
LD J ,A
LO I Y • NN
LO R,A
LO SP,IX
LDI

ADD A,(IX+D)
ADD HL,SS
AND TABLE
BIT B,R
CP
CPIR
DEC IY
DJNZ
EX (SP).IY
FLAG CODES
IM l
INC (HL)
INC !Y
INDR
JP (HL)
JR
LO (HL), N
LD (IY+D),N
LO (NN),HL
LO A, (DE)
LO OD,(NN)
LD IX,(NN)
LD R, (HL)
LD R,N
LD SP, IY
LDIR

Press <BREAK>,<ENTER> or type keyword

LDOS Help System
Page 14

Appendix B - - Keywords ;n the 5.1 Data Files

Help System Display Mode Version 5.1
Copyright (c) 1983 by Logical Systems, Inc.

Directory for HELP file : Z80M

NEG NOP OR S OR TABLE
OTOR OTIR OUT (C) ,R OUT (N) ,A
OUTO OUTI POP POP IX
POP IY PUSH PUSH IX PUSH IY
RES B,S RET RET C RETI
RETN RL S RLA RLC (HL)
RLC (IX+O) RLC {IY+D) RLC R RLCA
RLD RR S RRA RRC {HL)
RRC (IX+D) RRC (IY+D) RRC R RRCA
RRD RST SBC A,S SBC HL,SS
SCF SET B,S SLA SRA
SRL SUB S UNSIGNED COMPARISONS
XOR XOR TABLE

Press <BREAK>.<ENTER> or type keyword

Help System Display Mode Version 1.0
Copyright (c) 1983 by Logical Systems, Inc.

Directory for HELP file : TECHl

CMO FORMAT DCB DCB QR
DCB+00 DCB+01,02 DCB+03,05
DCB+06,07 (MOOl) OCB+06,07
DCT OCT QR DCT+00
DCT+03 OCT+04 DCT+05
DCT+07 DCT+08 DCT+09

. DEVICE CONTROL BLOCK DIR QR
DIR+02 DIR+03 DIR+04
OIR+l3,15 DIR+l6,17 DIR+l8,19
OIR+22,23 OIR+24,25 DIR+26,27
DIR+30 DIR+Jl DI REC

DCB RAM AREAS

(M003)
OCT+01,02
DCT+06

DIR+00
OIR+05,12
OIR+20,21
OIR+28,29

DIRECTORY RECORDS DISK COMMAND FILE FORMAT
DISK 1/0 TABLE DRIVE CODE TABLE EQUATEl/EQU
EQUATE3/EQU EXTENDED DIRECTORY RECORDS FCB
FCB QR FCB+00 FCB+01 FCB+02
FCB+03.04 FCB+05 FCB+06 FCB+07
fCB+08 FCB+09 FCB+l0,ll FCB+l2,13
FCB+l4,15 FCB+l6,19 FCB+20,23 FCB+24,27
FCB+28,31 FILE CONTROL BLOCK
FILTERS & DRIVERS FXDE
GAT QR GAT+00,5F GAT+60,BF
GAT+CB GAT+CC GAT+CD
GAT+D0,07 GAT+08,0F GAT+E0,FF
GRANULE ALLOCATION TABLE HASH INDEX TABLE

GAT
GAT+C0,CA
GAT+CE,CF

HIT LOAD MODULE FORMAT r<>Ol MEMORY MAP
r-K>03 MEMORY MAP TAPE FILE OBJECT CODE FORMAT

Press <BREAK>,<ENTER> or type keyword

LOOS Help System
Page 15

Appendix B - - Keywords 1n the 5.1 Data Files

Help System Display Mode Version 5.1
Copyright (c) 1983 by Logical Systems, Inc.

Directory for HELP file TECH2

@ABORT @AOTSK @CKDRV
@CLOSE @CMD @CMNDI
@DATE @DEBUG @DIV
@DSP @DSPLY @ERROR
@FEXT @FNAME @FSPEC
@INIT @KBD @KEY
@KILL @KLTSK @LOAD
@LOF @LOGER @LOGOT
@MULT @OPEN @PARAM
@PEOF @POSN @PRINT
@PUT @RAMDIR @READ
@RMTSK @RPTSK @RREAD
@RWRIT @SKIP @TIME
@WEOF @WHERE @WRITE
BYTE 1/0 PRIMITIVES CFCS$
DAY$ OCT$ DCTBYT
DIRCYL DIRRD DIRWR

@CKEOF
@CTL
@OODIR
@EXIT
@GET
@KEVIN
@LOC
@MSG
@PAUSE
@PRT
@REW
@RUN
@VER

DATE$
DFLAG$

DISK FILE HANDLER ROUTINES DISK FILE HANDLERS
DISK I/0 PRIMITIVE NAMES DISK I/0 PRIMITIVES
DIVEA DODCB$ DOSV$ ERROR 00
ERROR 01 ERROR 02 ERROR 03 ERROR 04
ERROR 05 ERROR 06 ERROR 07 ERROR 08
ERROR 09 ERROR 10 ERROR 11 ERROR 12
ERROR 13 ERROR 14 ERROR 15 ERROR 16
ERROR 17 ERROR 18 ERROR 19 ERROR 20
ERROR 21 ERROR 22 ERROR 23 ERROR 24
ERROR 25 ERROR 26 ERROR 27 ERROR 28
ERROR 29 ERROR 30 ERROR 31 ERROR 32
ERROR 33 ERROR 34 ERROR 35 ERROR 36
ERROR 37 ERROR 38 ERROR 39 ERROR 40
ERROR DICTIONARY EXDBG$
FILE CONTROL ROUTINES GETDCT
I/0 CONTROL BLOCKS INBUF$
INTERRUPT PROCESSOR TASK VECTOR STORAGE
INTVC$ JDCB$ JFCB$
JRET$ KEYBOARD I/0 ROUTINES
KI DCB$ KIJCL$ KISV$
MATH ROUTINES MFLAG$ MULTEA
OVRLY$ PDRV$ PRDCB$

HIGH$

INTIM$
JLDCB$
KFLAG$
LDRV$
OSVER$

PROGRAM ENTRY CONDITIONS PRSV$ RDSECT
RDSSEC ROM CONTROL ROUTINES RSELCT
SlDCB$ S2DCB$ S3DCB$ S4DCB$
S5DCB$ SBUFF$ SEEK SELECT
SFCB$ SFLAG$ SIDCB$ SODCB$
SPECIAL OVERLAY ROUTINES SPECIAL PURPOSE DISK ROUTINES
SUPERVISORY CALLS SVC SYSTEM BUFFERS
SYSTEM CONTROL INFORMATION SYSTEM CONTROL ROUTINES
SYSTEM ENTRY POINTS SYSTEM FLAGS
TASK CONTROL VECTORS TCB$
TIME & DATE ROUTINES TIME$ TIMER$
UNKNOWN ERROR CODE VERSEC
VIDEO & PRINTER I/0 ROUTINES WRPROT WRSECT
WRTRK
Press <BREAK>,<ENTER> or type keyword

LOOS Help System
Page 16

Appendix C - - Keywords in the 6.1 Data Files

Help System Display Mode Version 6.1
Copyright (c) 1983 by Logical Systems, Inc.

Directory for HELP file : BASIC

ABS ABSOLUTE VALUE ALTER LINES ARCTANGENT
ARGUMENT ARRAYS ASC ASCII VALUE
ASSEMBLY SUBROUTINE ATN AUTO
AUTOMATIC LINE NUMBERING AVAILABLE MEMORY
BRANCH TO SUBROUTINE CALL CANCEL ARRAY
COBL CHAIN CHARACTER STRING
CHR$ CINT CLEAR CLOSE
CL S COLUMN COMMAND COMMON
CONDITIONAL BRANCH CONT
CONT I NUE PROGRAM CONTROL KEYS
CONVERT INTEGER CONVERT SINGLE COS
CREATE SUBSTRING CSNG
CVO CV 1 CVS
DAT/.1. TO RANDOM BUFFER DATE$
DECIMAL TO OCTAL DEF FN
DEFDBL DEF INT DEFSNG
DELETE DELETE FILE DIM
EDIT EFFICIENT MEMORY USAGE
END ENO FILE ACCESS END OF FILE
ERASE ERL ERR
ERROR BRANCH ERROR CODE ERROR LINE
EXP FIELD FIX
FORCE ERROR FRE FUNCTION
GOSUB GOTO HEX$
INKEY$ INP INPUT
INPUT$ INSTR INT
KILL LAST RECORD LOOS IN BASIC
LEN LET LINE INPUT
LINE PRINT LINK PROGRAMS LIST
LOAD LOAD PROGRAM LOC
LOG LOG BASE E LPOS
LSET MATRIX VARIABLES
MERGE MI 0$ MKO$

CONVERT DOUBLE
COSINE
CURRENT RECORD
DATA

DEF USR
OEFSTR
DROP FRACTION
ELIMINATE LINES
EOF
ERROR
ERRS$
FOR/NEXT
GET
IF/THEN
INPUT#
KEYBOARD SCAN
LEFT$
LINE INPUT#
LUST
LOF
LPRINT
MEM
MKI$

MKS$ MULTIPLE BRANCH MULTIPLE BRANCH SUBS
NAME NATURAL EXPONENT
NATURAL LOGARITHM NEW OCT$
ON ERROR GOTO ON/GOSUB ON/GOTO OPEN
OPTION BASE OUT OVERLAYS PACK DOUBLE
PACK INTEGER PACK SINGLE PASSING VALUES PEEK
POKE POS POSITIONAL PRINT
PRINT@ PRINT TAB PRINT USING PRINT#
PRINTER TAB PUT RANDOM
RANDOM FILE BUFFER READ
READ PORT READ RANDOM FILE
READY FILE REM RENAME FILE
RENUMBER LINES REPLACE SUBSTRING
RESUME RETURN RIGHT$
ROW RSET RUN
SGN SIN SINE
SPC SPECIAL CHARACTERS
SQR SQUARE ROOT START PROGRAM
STOP STR$ STRING LENGTH
SUBSTRINGS SUSPEND EXECUTION
SYMBOLS SYNTAX SYSTEM
SYSTEM ERROR CODE TAB

READ MEMORY
READ TIME
RENUM
RESTORE
RND
SAVE
SPACES$
SPECIFIED LOOPS
STATEMENT
STRING$
SWAP

TAN

LOOS Help System
Page 17

Appendix C - - Keywords in the 6.1 Data Files

Directory for HELP file : BASIC (cont)

TANGENT
TRUNCATE
UNPACK DOUBLE
USR

TIME$ TROFF TRON
TRUNCATE STRING UNCONDITIONAL BRANCH
UNPACK INTEGER UNPACK SINGLE USER FUNCTIONS
VAL VARPTR VERTICAL TAB

WAIT
WRITE
WRITE
WRITE

WHILE /WEND WRITE WRITE MEMORY
PORT WR I TE PROGRAM TO PRINTER
PROGRAM TO SCREEN WRITE RANDOM
SEQUENTIAL WRITE#

Directory for HELP file LOOS

APPEND
BOOT
COMM
DATE
DO
FLOPPY
FREE
KSM/FLT
LOAD
PATCH
REPAIR
SET
SYN
SYS BREAK
SYS FAST
SYS SYSRES
SYSGEN
TRSHD4/DCT

ATTRIB
BUILD
CONV
DEBUG
DUMP
FLOPPY/OCT
HARD DRIVE
LIB
MEMO I SK
PURGE
RESET
SETCOM
SYNTAX
SYS BSTEP
SYS GRAPHIC
SYS SYSTEM
TAPE100
VERIFY

Directory for HELP file : TECHl

AUTO
CLICK/FLT
COPY
DEVICE
ERROR
FORMAT
HARD FORMAT
LINK
MEMORY
REMOVE
ROUTE
SETKI
SYS ALIVE
SYS DATE
SYS RESTORE
SYS TIME
TIME

BACKUP
COM/DVR
CREATE
DIR
FILTER
FORMS
JOBLOG
LIST
PASSWORDS
RENAME
RUN
SPOOL
SYS BLINK
SYS DRIVE
SYS SLOW
SYS TYPE
TRSFORM4/CMD

CMO FORMAT DCB DCB QR DCB+00
DCB+01 • 02 DCB+03. 05 DCB+06 • 07 OCT
OCT QR DCT+00 DCT+01,02 DCT+03
DCT+04 DCT+05 DCT+06 OCT+07
DCT+08 DCT+09 DEVICE CONTROL BLOCK
DIR QR DIR+00 OIR+01 DIR+02
DlR+03 OIR+04 OIR+05,12 OIR+l3,15
DIR+l6,17 DIR+l8,19 DIR+20,21 DIR+22,23
DIR+24,25 DIR+26,27 DIR+28,29 DIR+30
DIR+31 OIREC DIRECTORY RECORDS
DISK COMMAND FILE FORMAT DISK I/0 TABLE
DRIVE CODE TABLE EXTENDED DIRECTORY RECORDS
FCB FCB QR FCB+00 FCB+01
FCB+02 FCB+03 t 04 FCB+05 FCB+06
fCB+07 FCB+08 FCB+09 FC8+10,ll
FCB+l2,13 FCB+14,15 FCB+l6,19 FCB+20,23
FCB+24,27 FCB+28.31 FILE CONTROL BLOCK
FILTERS & DRIVERS FXDE GAT
GAT QR GAT+00,5F GAT+60,BF GAT+C0,CA
GAT +CB GAT +CC GAT +CD GAT +CE, CF
GAT+D0,D7 GAT+DB,DF GAT+E0,FF
GRANULE ALLOCATION TABLE HASH INDEX TABLE
HIT LOAD MODULE FORMAT MEMORY HEADER
TAPE FILE OBJECT CODE FORMAT

LOOS Help System
Page 18

Appendix C - - Keywords in the 6.1 Data Files

Help System Display Mode Version 6.1
Copyright (c) 1983 by Logical Systems, lnc.

Directory for HELP file TECH2

(MBORT
@BREAK
@CLOSE
@DATE
@DEBUG
(oOI V 16
(<1DSPL Y
@FLAGS
@GTDCB
@HEX16
@INIT
@KEVIN
@LOF
@MUL16
@PAUSE
@PRT
@Rosse
(oRENAME
@RREAD
(c\RWRIT
@SLCT
@VOCTL
@WHERE
tilWRTRK
ERROR 03
ERROR 07
ERROR 11
ERROR 15
ERROR 19
ERROR 23
ERROR 27
ERROR 31
ERROR 35
ERROR 39
ERROR 43
FLAGS USED
S100
$104
S14
S18
S21
S26
S30
S34
S41
S45

frlAOTSK
(oCHNIO
@CMNOI
(rlOCINIT
@DECHEX
@OIV8
@ERROR
@FNAME
@GTDCT
@HEX8
<~IPL
@KLTSK
@LOGER
@MUL8
@PEOF
@PUT
@RDTRK
@REW
(~RSLCT
@SEEK
@SOUND
@VER
@WRITE
ERROR 00
ERROR 04
ERROR 08
ERROR 12
ERROR 16
ERROR 20
ERROR 24
ERROR 28
ERROR 32
ERROR 36
ERROR 40
ERROR 63
S0
S101
S11
S15
S19
S22
S27
S31
S35
$42
S46

@BANK @BKSP
@CKDRV @CKE OF
@CMNDR @CTL
@OCRES @DC STAT
@DIRRO @OIRWR
@DOD IR @DSP
@EXIT @FEXT
@FSPEC @GET
@GTMOD @HDFMT
@HEX DEC @HIGH$
@KBD @KEY
@LOAD @LOC
@LOGOT @MSG
@OPEN @PARAM
@POSN @PRINT
@RAMO IR @ROSEC
@READ @REMOV
@RMTSK @RPTSK
@RS TOR @RUN
@SEEKSC @SKIP
@STEP I @TIME
@VRSEC @WEOF
@WR SEC @WR SSC
ERROR 01 ERROR 02
ERROR 05 ERROR 06
ERROR 09 ERROR 10
ERROR 13 ERROR 14
ERROR 17 ERROR 18
ERROR 21 ERROR 22
ERROR 25 ERROR 26
ERROR 29 ERROR 30
ERROR 33 ERROR 34
ERROR 37 ERROR 38
ERROR 41 ERROR 42
ERROR DICTIONARY
S1 S10
S102 S103
S12 S13
S16 S17
S2 S20
S24 S25
S29 S3
S32 S33
S4 540
S43 S44
S47 S49

LOOS Help System
Page 19

Appendix C - - Keywords in the 6.1 Data Files

Directory for TECH2 (CONT)

S5 S50 $51 S52
$53 S54 S55 S56
$57 S58 S59 S6
S60 S61 S62 $63
S64 565 S66 S67
S68 S69 S7 S70
S71 S72 S73 S74
S75 S76 sn S78
579 S8 S80 S81
582 $83 S85 S87
S88 S9 S90 S91
S93 594 S96 S97
598 S99 SUPERVISORY CALLS
SVC UNKNOWN ERROR CODE X0
Xl Xl0 Xll X12
X13 Xl4 X15 X16
Xl8 Xl9 XlA XlB
XlO XlE Xlf X2
X?0 X21 X22 X23
X28 X29 X2A X2B
X?C X2D X2E X2F
X3 X31 X32 X33
X34 X35 X36 X37
X38 X39 X3A X3B
X3C X30 X3E X3F
X4 X40 X41 X42
X43 X44 X45 X46
X47 X48 X49 X4A
X4B X4C X4D X4E
X4F XS X50 X51
X52 X53 X55 X57
X58 X5A X5B X5C
X5E X6 X60 X61
X62 X63 X64 X65
X66 X67 X68 X7
X8 X9 XA XB
XC XD XE XF

Z80A/HLP and Z80B/HLP have the same keywords as the 5.1 version.

LOOS Help System
Page 20

COPYRIGHT (C) 1982 BY LOGICAL SYSTEMS, INC.

TABLE OF CONTENTS

FM - Overview•..•.••.•.......•.•..••.....•..••....•..•...•••.••... 3

DR IVE NUMBER USAGE:

QUICK DETAIL
In Display mode
In Kill mode
In Move mode •••
In the Remove Mode •••••••••••••••••••••••••••••••••••••

USING PARTSPECS:
WILOCARD CHARACTERS:

PARAMETERS:

EXISTENCE PARAMETERS:
ABS
CK (Check NEW with Move or Remove)
N (New)

4
4
4
5

5
6

7
7
7

See individual Display, Kill, Move or Remove sections for detailed
descriptions of ABS, CK, and NEW

DISPLAY PARAMETERS:
A (Allocation)
G (Gran)
K (1(124 byte blocks)
O (Sort)
P (Printer)
Q (Query)

ATTRIBUTE PARAMETERS:
I (Invisible)
S (System)
V (Visible)

CM (Clear MOD)
SM (Set MOD)

...
'

FB (Use Flag Bit)
CFB (Clear Flag Bit)
SFB (Set Flag Bit)
PR (Use Protection Level)

DATE PARAMETERS:
D (Date)
SD (Set Date)
T (Today)

MODIFICATION PARAMETERS:
M (Modified)
U (Unmodified)

SIZE OF FILE PARAMETERS:
L (Limit)
Z (Size)

7
7
8
8
8
8

9
9
9

9
9
9
9

1(1
1(1

1(1
1(1
1(1

11
11

11
12

14
15
16
17

17
21

24
£4.
25
25
26
26

27
27
27

27
28
28
28
28
29

29
3(1
3(1

31
31

31
31

FM - File Manager Page 1 Revision 1.f)

QUICK DETAIL
JCL OPERATION PARAMETERS:

JC L .••. ,,,. . • • . • • • • • . • . • . . • 12 32
ABORT • .. • • • .. • . • . • • • • . • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • 12 32

FILE OUTPUT PARAMETERS:
FI (Fi1e) •••••••••••••••.••••••••••••••.••••••••.•.•••• 12 32
STR (Substitution string) •.••••••••••••..•••••••••.••.• 12 ·33
E (Enter character) ••••••.••••••••••••••...••••••.••... 13 33

FINAL MESSAGE DISPLAY:
In the Di sp 1 ay mode • • • . . • • • . • . . • • . . . • . . . • • . . • • 34
In the Move mode .. ~ _
In the Ki 11 mode .. .
In the Remove mode

ERROR HAND LI NG:

34
34
34

Disk 1/0 errors ",,. _ 34

HELP SCREEN DISPLAY .••.•.••......••.••...•..•..•••..••.••.••...•....• 36

CUSTOMER SERVICE AND LIMITED WARRANTY ••.•••••..••••.•.••••••.•••••••... 37

FM - File Manager Page 2 Revision 1.0

FM UTILITY PROGRAM

FM stands for File Manager. It is a utility program designed to facilitate specific
manipulation of files. Four modes are available - Display, Kill, Move, and Remove, with
the Display mode being the default. The basic syntax and available parameters for the
command are:

==
FM partspec:d (parm,parm, ••• }
FM partspec:dl :d2 (parm,parm, •••)

FM partspec:d (KILL,parm,parm, •••)
FM partspec:dl :d2 (KILL,parm,parm, •••)

FM partspec:dl :d2 (MOVE,parm,parm, •••)
FM partspec:dl :d2 :d3 (MOVE,parm,parm, •••)

FM partspec:dl :d2 (REMOVE,parm,parm, •••)
FM partspec:dl :d2 :d3 (REMOVE,parm,parm, ••• }

======:===
The first three modes correspond with the commands DIR, PURGE, and the BACKUP by Files
utility. The Remove mode is a combination of BACKUP and PURGE, with the files being
moved from a source to a destination drive, and then being removed from the source
drive. One of the main features of FM is that file operations can involve more than the
usual number of drives. This provides comparison opportunities that can simplfy the
maintenance of diskette sets. The partspecing abilities of FM include three wildcard
characters as well as the ability to specify a separate filename and extension for
comparison purposes. The parameters include those previously available with BACKUP,
such as modified, visibility status, file dating, etc. New parameters deal with recent
dates, unmodified files, a way to set or clear mod flags without actually moving the
files, and more. Due to the increase in popularity of large volume disk drives, several
special parameters have been added to facilitate moving files from these larger drives
onto smaller volume diskettes. lastly, the speed of moving files has been increased by
approximately 50% over the normal BACKUP by files, yet still includes a full read
verify.

For reference purposes, the wildcard characters and the parameters are:

===;====~=======
WILCAROING CHARACTERS:

$ Used as a masking character
* Used to indicate an Instring function
! Used to indicate truncation of character checking

A (Allocation), O {Sort), P (Printer), Q (Query)
GRAN(G), K (1024 byte blocks)
NEW (N), ABS, CK {Check)
MOD (M), U {Unmodified), VIS (V), INV (I}, SYS (S)
DATE (D}, TODAY (T)
CM (Clear Mod), SM (Set Mod), SD (Set Mod date),
CFB (Clear Flag Bit) SFB (Set Flag Bit) FB (Use Flag)
PR (Use Prot)
SIZE (Z), LIMIT (L)
JCL, ABORT
FILE (FI), STR (Substitution string) ENTER {E)
KILL (KI), MOYE (MV), REMOVE (RMV)

FM - file Manager Page 3 Quick Reference

As can be seen from the layout of the first command block, FM has four modes (Display,
Kill, Move and Remove), and can be considered to have three fields for any mode; the
PARTSPEC, the DRIVE NUMBERS, and the PARAMETERS. Since the function of the drive
number(s) is very important to FM, it will be explained first. The explanation of
partspecs will follow. with the parameters being discussed last.

OR IVE NUMBERS:

The use of drive numbers depends on the mode used. In the Display and Kill modes,
either one or two drive numbers can be used. In the Move or Remove modes, at least two
drives must be specified, and three drives can be involved. When multiple drive numbers
are used, the first will be always be referred to as the SOURCE DRIVE, and the second
as the DESTINATION DRIVE. This will be true regardless of the mode involved. When using
a three drive Move command the third drive will be referred to as the COMPARISON DRIVE.
Although the following examples all use drives 0 and 1, any drive numbers may be used.

IN THE DISPLAY MODE:

FM :0
FM : 0 : 1

These two commands show the use of drive numbers in the Display mode. The first command
means "Show me all the files on drive 0 (the source drive) that match any partspec or
parameters I have specified". The second command means almost same thing, except that
using the second drive number says "Display the files on drive 0 based on a comparison
of the files on drive iu. The important thing to remember is that the displayed files
will always be files that are on drive 0, the source drive. Therefore, the Display mode
can be used to "preview" the action of a Kill or Move command, and can assure that only
the desired files will be acted upon.

IN THE KILL MODE:

FM :0 (KILL)
FM :0 : 1 (KILL)

These two commands show the use of drive numbers in the Kill mode. The first command
means 11 Kill all the files on drive 0 (the source drive) that match any partspec or
parameters I have specified". The second command means almost same thing, except that
using the second drive number says "Kill the files on drive 0 based on a comparison of
the files on drive 1". The important thing to remember is that the Killed files will
always be files that are on drive 0, the source drive in this example. No file on drive
1 will be affected. To be assured that proper files will be killed, first use the
identical command without the KILL parameter (i.e., the Display mode) to view the files
that matched the specifications used.

IN THE MOVE MODE:

FM :0 :1 (tv'OVE)
FM :0 :1 :2 (tv'OVE)

The Move mode is a little more complex as far as the use of drive numbers is concerned.
The important thing to remember is that files will always be moved from the first drive
to the second, regardless of the use of a third drive. When using a two drive Move
command, the second drive, besides being the destination drive, also becomes the
comparison drive. Thus the two drive command means "Move files that match the partspec
and parameters from drive 0 to drive 1, based on a comparison of drive 1". The three
drive command means "Move the files from drive 0 to drive 1 based on a comparison
between drives 0 and 2". To be sure the proper files wi 11 be moved, use the command
without the MOVE parameter to display the matching files. For the first example, the
corresponding Display mode command would be FM :0 :1, as only two drives are involved.

FM - File Manager Page 4 Quick Reference

To view the matches of the second Move example, the Display mode command FM :0 :2
should be used, as drive 2 rather than drive 1 is the comparison drive.

IMPORTANT

The NEW and ABS parameters, as discussed in a later section, are very important in MOVE
and REMOVE commands. If in doubt concerning their use, study the detailed discussion
section.

IN THE REMOVE MODE:

FM :0 :1 (REMOVE)
FM :0 :1 :2 (REMOVE)

The Remove mode uses drive numbers in the same manner as the Move mode. That is, that
files will always be moved from the first drive to the second, regardless of the use of
a third drive. When using a two drive Remove command, the second drive, besides being
the destination drive, also becomes the comparison drive. Thus the two drive command
means "Move files that match the partspec and parameters from drive 0 to drive 1, based
on a comparison of drive 1, and then kill the files on drive 0". The three drive
command means "Move the files from drive 0 to drivel based on a comparison between
drives 0 and 2, and then kill the files on drive 0". To be sure the proper files will
be moved, use the command without the REMOVE parameter to display the matching files.
For the first example, the corresponding Display mode command would be FM :0 :1, as
only two drives are involved. To view the matches of the second Move example, the
Display mode command FM :0 :2 should be used, as drive 2 rather than drive 1 is the
comparison drive.

PARTSPECS:

Partspec stands for Partial File Specification. A file specification is defined as
being a filename up to 8 characters long followed by an optional extension of a "/"
followed by up to three characters. A partspec is considered to be any or all parts of
a file specification. One important point to remember is that passwords are not
necessary in any FM command, and should NEVER be used.

SPLITTING PARTSPECS:

The normal LOOS use of partspecs allows specifying a filename, an extension, or a
filename/ext. The NOT symbol 11 -" can al so be used to show an exclusion partspec such as
-filename, -/ext, or -filename/ext. FM supports these standard uses of a partspec and
adds to them! To accomplish this, FM allows a comma 11 , 11 to be used as a separator
between the filename and extension. Additionally, a filename may now include a trailing
11 / 11 , meaning onl_y files with no extensions. The following table lists the different
partspec modes:

filename or -filename This type or partspec lets you specify either an inclusion
filename or an exclusion filename. Any file whose filename matches the criteria will be
a match regardless of the presence or absence of an extension.

filename/ or -filename/ This example is similar to the previous one, except that only
files without extensions will be considered.

/ext or -/ext This type or partspec lets you specify an inclusion or exclusion
extension. Since all files must have filenames, any file with an extension matching the
criteria will be valid.

filename/ext or -filename/ext This example lets you specify an inclusion or exclusion
filename as long as the files all match the extension criteria.

FM - File Manager Page 5 Quick Reference

{-}fi1ename,{-}/ext The power of having separate filenames and extensions makes
Itself felt by having the ability to specify an inclusion or exclusion filename. and a
separate inclusion or exclusion extension. The braces"{}" mean that the NOTs are
optional; the braces themselves should not be included on the command ·11ne. Following
are the combinations using the separation of filename and extension:

filename,/ext -filename,/ext fllename,-/ext -filename,-/ext

WILOCARD CHARACTERS IN PARTSPECS:

FM allows the use
(Mask character),
these characters
extension fields.

of three wildcard charcters whenever a partspec is used. These are$
* (Instring character), and ! (Truncate character). More than one of
can be used at the same time, and in either the filename and/or

$ - The mask character is used to indicate that any character in a given position will
be considered a match. For example, a partspec of $$A mea.ns "match all files that have
an A as the third letter of the filename, regardless of the other characters in the
filename. The$ may also be interspersed in a filename, such as T$$60$1. Using the$ as
a trailing character, such as TE$$$, does NOT mean "only those files starting with TE
and that contain 5 characters". The normal LOOS partspecing takes a partspec "TE" to
mean "all files starting with TE, regardless of any other characters whkh may follow".
To specify filenames of a certain length, see the ! character. The$ character can be
used in the extension part of a partspec as well as in the filename portion.

* - The instring character is used to find a match of a specified string of characters
anywhere in a filename or extension. The string to find may contain the $ mask
character. For example, a partspec of *AT would find a match in files named PATCH,
ATTACK, FORMAT, etc. A partspec such as *B$S would find files such as BASIC, OLOBUSI,
etc. A partspec of /*C would match al 1 fi.1es that had a C anywhere "in the extension. As
filenames and extensions can be a maximum of 8 and 3 characters long, respectively, the
characters following an* are limited to 7 for a filename and 2 for an extension.

I - The truncate character is used to indicate files that have a filename or extension
of a specified length. For example, a partspec of ALF! would match a file named ALF,
but not ALFAl, ALFALFA, or AL. The$ character can also be used with the !. A partspec
such as TE$$$! would find all files that start with TE and exactly five characters
long. A partspec of /T$! would match all files whose extensions start with a T and are
exactly two characters long.

PARAMETERS:

The parameters of FM can be considered to be grouped into classes by function. Certain
parameters deal with the attributes of files, some with dates, and others with size. To
allow FM to be controlled by a JCL file, the JCL and ABORT parameters are included. The
KILL, MOVE and REMOVE parameters switch FM out of its normal Display mode. One group of
parameters deals with the type of display you will get from FM; sorted or unsorted, to
the video or printer, and prompt or go nonstop.

FILE EXISTENCE PARAMETERS:

The NEW and ABS parameters can be used to override the default "Old comparison" feature
of FM. NEW is valid in all four modes, while ABS is only valid for the Move and Remove
modes. The CK (Check) parameter can be used along with NEW do determine if there is
enough room on the destination files when moving files from one drive to another.

FM - File Manager Page 6 Quick Reference

NEW (N)

The NEW parameter can be included in any FM command that uses two or more drives; in
one drive commands, NEW is meaningless. The normal default for any FM command
regardless of the mode can be considered to be OLD. This means that only those files
that exist on both of the drives will be considered. For example, the command "FM :0
:1" will show only those files that are on both drives 0 and 1. To see the files that
are on drive 0 but not on drive 1, the command "FM :0 : 1 (NEW)" can be used. The NEW
parameter is valid in all four modes.

CK (Check)

The purpose of the CK parameter is to check the amount of free space on the destination
disk when the NEW parameter is used along with MOVE or REMOVE. If there is not enough
free space to hold the new files, an appropriate error message will be shown, and the
operation will abort.

ABS

The ABS parameter can be used in the Move and Remove modes. The normal functioning of
these modes is to only consider files that exist on both drives specified. If ABS is
used, FM will act on the files whether or not they exist on the destination (or
comparison) drive.

DISPLAY PARAMETERS:

A (Allocation)

The A parameter is used to display certain information about a file besides the
filename and extension. The format of the display will be:

I MM/00/YY I nnnR
+MM/DD/YY+ nnnR

The difference between these two examples is the use of I and+ separators surrounding
the date field. The date enclosed is the Mod date, and shows the date on which the file
was created or last written to. If the I character is used, it means that the file 1 s
mod flag is not set. A+ character indicates that the file has been modified (the FM
parameters SM and CM may be used to adjust a file 1 s Modified condition). The "nnnR" is
the file 1 s size in full disk records (256 byte blocks). The GRAN and K parameters may
be used to switch from the number of records to the number of grans of a specific size,
or to the number of 1024 byte blocks. In the Display mode, the normal screen or printer
output will show the files in four across format. The A parameter switches to single
line output. The Kill, Move, and Remove modes automatically show the mod date and file
size.

GRAN::;:nn (G)

The GRAN parameter is used to display the size of a file in grans. Since LOOS supports
many different disk types, the number of sectors per gran to use for the calculation
may be entered by the user. If the GRAN parameter is used with no value, a 6 sector
gran will be assumed. This will match the format of a 5" double density disk. The total
grans of all matching files will be shown on the last line of the display.

FM - File Manager Page 7 Quick Reference

~ (1024 bt~e blocks)

The K parameter is used to display the size of a file in K, or 1024 byte blocks. No
"partialu K will be shown; any remainder will be rounded up to the next larger value.
For example, 4.5 K will show as 5K. The total K of all matching files will be shown on
the last line of the display.

O=ON/OFF (Sort)

Functionally, the O parmeter is used to turn OFF the alphabetic sort feature of FM.
Norma11y the Display mode show files sorted a1phabetica1 ly, regardless of the order in
which they are encountered when searching the disk. This is very useful for locating a
particular file. On the other hand, the Kill, Move, and Remove modes act on the files
in the order they are encountered. Thus, at times it may be desireable to display the
files in their unsorted order before using one of those commands. If O is not specified
when doing a Display mode FM command, it defaults to on.

NOTE
Sorting the file specifications requiresa-certain amount of free memory. If there is
not enough memory available; FM will not display the files in alphabetical order. This
will be a very unusual occurrence, but can happen if free memory drops below a certain
point.

P (Printer)

Normally, the files acted on are shown on the video display. The P parameter provides a
way to send the results to a printer. In the Display mode, the files are normally sent
to the printer four across. If the A parameter is used, each file will be printed on a
separate line. If the P parameter is used in the Kil 1, Move, or Remove mode, the file
display will also be sent to the printer in single line format.

Q=ON/OFF (Query)

The Q parameter is used in a11 four FM modes. With the Kill, Move and Remove modes, it
lets the user be queried whether to act on the currently displayed file. For Kill and
Remove, the default is ON (query before a file is killed); for Move the default is off
{move files without asking). The default may be overridden by specifying the desired
state of the Q parameter. In the Display mode, a Q=OFF parameter will keep the screen
display from pausing as it normally does every 11 lines, and will display all files
non-stop regardless. In the Kill, Move, and Remove modes, the following prompt will
appear if Query is ON:

(Y / N/C) ?

Pressing <Y> tells FM to act on the file; pressing either <N> or <ENTER> means to
bypass the file without action. pressing <C> will act on the file and turn OFF the
Query function. FM will continue nonstop from this point.

FILE ATTRIBUTE PARAMETERS:

The next group of parameters lets the user specify groups of files based on their
directory attribute type or modification status, as well as whether or not they exist
on a destination or comparison drive. Two parameters, SM (Set Mod flag) and CM (Clear
Mod flag) are provided to either set or clear the modification flags on specified
files. Three parameters deal with the "Flag bit". This bit is also used by the PDS
utility (a product of MISOSYS) to indicate its files. LOOS indicates files with this
bit set by displaying an asterisk after their name in a DIRectory display. FB will find
all files with the Flag bit set, SFB will set the Flag bit on matching files, and CFB
will clear the Flag bit. The PR parameter will find all files matching a specified
protection level, 0-7 (as described in the LDOS library command ATTRIB).

FM - File Manager Page 8 Quick Reference

INV (I)

The INV parameter means act on only those files that are marked in the directory as
being INVisible. It can be used in conjunction with the VIS and SYS parameters as
required.

VIS (V)

The VIS parameter means act on only those files that are visible in a directory
display. If neither INVisible nor SYStem are used as parameters, FM will use VIS as a
default. To combine directory type parameters, use a command such as (V,1) meaning both
visible and invisible, (V,S) meaning visible and system files, or (V,I,S) meaning all
file types.

SYS (S)

The SYS parameter is used to specify LOOS system files. It can be used along with the
VIS and INV parameters to specify file groups as needed. When using the S parameter in
the Move or Remove mode, FM will correctly place LOOS system files in their required
directory slots. If the SYS0/SYS file is moved, FM will also move the System
Information Sectors as described in the LOOS documentation. This means that the state
of any sysgened configuration, the state of the power-up date and time prompts, and the
default drive configurations will be moved to the destination disk.

CM (Clear Mod flag)

The Display mode, using the CM parameter will clear the mod flag from any specified
file. In the Move mode, using CM will always clear the mod flag on the source and
destination drives. The Remove mode clears the mod flag on the destination drive. The
Kill mode ignores this parameter.

SM (Set Mod flag)

In the Display mode, using the SM parameter wi 11 set the mod flag on every file that
matches the specified partspec and/or parameters. In the Move mode, using SM will set
the mod flag on both the source and the destination drive. In the Remove mode, the
destination mod flag will be set. Since the source file will be killed, the SM
parameter does not consider it.

FB (Use Flag Bit)

The "Flag" bit is a method of marking a group of files. The LOOS compatible PDS utility
program also makes use of this directory marking feature. FM provides the ability to
mark desired files in this manner, thereby allowing them to be Displayed, Moved, or
Killed as a group. If a file has this bit set, it will appear in a normal LOOS DIR
command with an asterisk after its name. The FB parameter can be used to find these
f i 1 es.

CFB (Clear Flag Bit)

This parameter provides a means to clear the user "Flag" bit discussed in the FB and
SFB parameters. To see files that have this flag bit set. do a DIR command and observe
those files that have an asterisk after the filespec.

FM - File Manager Page 9 Quick Reference

SFB (Set Flag Bit)

This parameter provides a means to set the user "Flag" bit for a f'ile. It can be used
as a means of marking a group of files to be manipulated in a common manner. To see
fl les that have this flag bit set, do a DIR command and observe those files that have
an asterisk after the filespec.

PR (Use PROTection Level)

In the Display mode, this parameter limits the display to those files that have a
matching Protection level. Normally, this protection is linked with the use of a
password assigned to a file. The different modes will act on only those files that
match the protection level. This protection level may be assigned with the LOOS library
command ATTR 1B.

DATE SPECIFICATION PARAMETERS:

Three FM parameters deal with a file's date; two of them are used to select files based
on a date, while the third can be used to change a file's date. The term "date" when
used in reference to a file is the mod date - the date the file was created or last
written to.

DATE (D)

The date parameter is used to specify a single date or a range of dates that will be
used to determine if a fi 1 e shou 1 d be acted upon. Four forms of the parameter are
allowed:

D="MM/OO/YY" Files only with the specified date.

D="Ml/D1/Yl-M2/D2/Y2"
inclusive.

Files with dates between the first and the second,

D="-MM/DD/YY" Files with dates less than or equal to the specified date.

D="MM/DD/YY-" Files with dates greater than or equal to the specified date.

The D parameter may be used in a11 modes.

SD (Set Mod date)

The SO parameter is use to set the modification date of specified files. The date can
be set either to the current system date or to a user specified date. The format for
this parameter is:

SD This command will use the current system date.

SD="MM/DD/YY" This command will use the specified date string.

In the Move or Remove mode, using SD will set the dates on the destination drive files.
The files on the source drive will retain their original dates.

TODAY (T)

One of the most common uses of the date parameter is to deal with files that have been
recently modified. In recognition of this, the TODAY, or T, parameter has the ability
to define a range of dates relative to the current setting of the LOOS system date. The
allowable range is from seven days previous to the current date. The format of the T
command is:

FM - File Manager Page 10 Quick Reference

T This command means files with today's date.

T:::"n" where "n" is a number I to 7; I meaning yesterday and 7 meaning seven days
ago.

T=" nl-n2" where nl is greater than n2. This command means "from nl days ago to n2
days ago".

T="-n" This command means "from seven days ago to n days ago".

T=="n- 11 This command means "from n days ago to today".

The T parameter can be used all modes.

FILE MODIFICATION PARAMTERS:

The file modification parameters are used to select either files that have been
modified or files that have not been. With LOOS, a file is considered to be modified if
it has been written to since it was last backed up.

MOD (M)

The MOD parameter can be used to specify only those fi 1es that have their "Mod" flags
set. In normal LOOS operation, a file's mod flag will be set any time a file is written
to or changed in any manner. The FM parameters SM (Set Mod) and CM (Clear Mod) can be
used to adjust a file's Mod status.

U (Unmodified)

This parameter can be used to specify only those files that have not been written to or
changed. As with the MOD parameter, the SM and CM parameters can be used to change a
file's Mod status.

FILE SIZE PARAMETERS:

Two parameters, Limit and Size, can be used very effectively in systems that need to
move data from large volume drives to smaller ones. While the FM utility does not
provide a way to move a single large file onto a series of smaller disks, it does give
the user an easy means to bypass these large files in Move or Remove commands, and then
see which files were not moved.

LIMIT (LM)

The Limit, or LM, parameter is used to specify a maximum file size. The value for the
Limit parameter will usually reflect the size of the destination disk to be used in the
Move mode. For example, a 4a track, double density, single sided disk has 174K free
after formatting. A 35 track, single density, single sided disk has 83K free after
formatting. When moving files from a larger to a smaller disk, you can use the Limit
parameter to have the FM utility ignore any files that will not fit on a single
destination disk. For example:

FM :0 :1 (MOVE,LM=l74)

This command tells FM not to attempt to move files larger than 174K. Once the Move has
finished, the Size parameter can be used to see any files that have not been moved.

FM - File Manager Page 11 Quick Reference

SIZE <Lt.

The Size, or Z, parameter is used to view files that are larger than a specified
length. H1is parameter can be used in conjunction with the Limit parameter when moving
files from a large volume drive to multiple smaller disks. The format is:

The "nnn" is the size in K (l!,J24 byte blocks).

JCL PARAMETERS;

The JCL {Job Control Language) parameters prov·ide a m~:ans to nm the FM utility under
the contro·r of the LOOS JCL processor. The use of these parameters is necessary due to
the automatic error recovery feature of FM. During certain operations, FM will prompt
the operator if a disk 1/0 error has occurred, asking whether to retry the operation,
skip the file in question, or abort the opertion entirely. This unexpected prompt could
cause an active JCL to get ''out of sync", and random results could follow. To avoid any
problems. the following two parameters can be used.

JCL=Retri f!S

This parameter tells FM that the current operation is being controlled by a JCL file,
and also lets the operator specify the number of automatic retries to be attempted in
case of an error. If JCL is used with no value, two retries will automatically be done.
In either case, if the retries are not sucessful, the file will be skipped and the FM
operation will continue. The one exception to this is the occurence of a "Disk full"
error, which wi l ·1 abort an FM command running under JCL contro 1.

ABORT

The ABORT parameter can be used to override the automatic retry function that occurs
when running under JCL control. If ABORT is specified, the occurence of any error will
abort the FM command. and the JCL processing.

OUTPUT FILE PARAMETERS:

The output file parameters of FM are ENTER, FILE and STRING. They provide a means of
writing any matching filespecs to an ASCII disk file. If desired, the filespecs can be
embedded in a 1arger ASCII string, with the entire string being written to an output
file. The main purpose of this feature is to create JCL files that can later be
executed to perform a desired function on a group of files.

FILE="fi1ename"

The FILE parameter is used to specify the name of the output file. If no extension is
specified, /JCL will be the default. If the FILE parameter is used with no "filename",
a file called FMOUT/JCL will be written. If an error condition is encountered when
writ·ing the output file, a single error message will be disp1ayed but the FM command in
progress will continue. The STRING parameter can be used to specify the characters that
will be output to the file. If it is omitted, the only characters written to the output
file will be the filespec, including the drive number of the source drive.

STRING="desired output string"

The STRING parameter can be used to specify the 1 i ne sent to an output file. It a 11 ows
for insertion of matching filespecs with and without drive number and password, and can
embed <ENTER> characters in the string. Each string sent will automatically be
terminated with a carriage return. Three special characters are used to accomplish
this. They are:

FM - File Manager Page 12 Quick Reference

& Will translate to FILENAME/EXT.PASSWORD:D **
I Will translate to FILENAME/EXT

Will translate to <ENTER> (Note that the <ENTER> translation can be assigned to
some key other than the 11 ; 11 with the ENTER parameter).

** The PASSWORD mentioned in this section will only be used in the version for LOOS
5.1. Those using LDOS/TRSDOS 6.0 can disregard any reference to it. The PASSWORD
referred to will be .EZTO, which is a substitute for the LOOS 5.1 master password.
For example, consider the following FM command:

FM data:0 :1 (FI,STR="RENAME & /OLD")

If the files DATAl/ARS and DATA2/ARS matched the command, the resulting ouput file
would have the lines:

RENAME DATAl/ARS.EZT0:0 /OLD
RENAME DATA2/ARS.EZT0:0 /OLD

Once the FM command had completed, issuing a DO FMOUT/JCL would perform the desired
renaming function.

E (Enter Character)

This parameter provides a means to designate a character that will be translated into a
carriage return, or "Enter" character, in an output string. The default character value
is a semicolon";". If it is necessary to substitute some other character, the format
E=value, or E="character" can be used. Specifying E=NO will cancel this feature.

FM - File Manager Page 13 Qui ck Reference

DRIVE NUMBERS

Since FM was designed to be a utility for file comparison, drive numbers play an
important part in the final results of an FM command. For ease of explanation, this
section will be broken up into four parts; the Display Mode, the Kill mode, the Move
mode, and the Remove mode. In all modes, it is permissible to use more than one drive.
Since the NEW and ABS parameters greatly affect the results of multiple drive commands,
they will also be discussed in this section. The CK (Check before move) parameter will
be detailed in the Move and Remove sections.

IMPORTANT POINT

The FM utility normally operates with an implied "Old" parameter whenever two or more
drive numbers are used in a command. This means that ONLY the files that exist on both
drives will be considered as matching. The NEW parameter will override this feature in
all four modes. and the ABS parameter may be used in the Move and Remove modes as
explained in the following sections.

IN THE DISPLAY MOOE:

The normal use of a file display utility is to show the names of files on a particular
drive. FM does support this standard feature. In addition, FM allows the display to be
based on a comparison of one drive to another.

When using a single drive number, the FM display mode is similar to the normal DIR
Library command. The files on the specified drive that meet any partspec criteria or
parameters are displayed. The syntax of a display mode single drive command would be:

FM :d (parm,parm, •.•)
FM partspec:d
FM partspec:d (parm,parm, ..•)

As these general descriptions show, the display of files on a drive can be based on
partial file spec:11ifications as well as other parameters. The important point to note:
it is permissible to specify only one drive.

To use the comparison feature of FM, two drive numbers must be specified.

IMPORTANT POINT

When using two drives on the command line, the resulting display will always consist of
files from the FIRST DRIVE NUMBER specified.

The most basic use of two drive numbers in the display mode is to ascertain which files
exist on both of the specified drives. For example:

FM : dl : d2

As stated earlier, FM uses a default "Old" parameter. Thus, this command would display
only the files on the first drive (dl) that were also on the second drive (d2).
Partspecs and/or parameters could also be included in this type of command.

The NEW parameter will reverse this condition, allowing the display of files that exist
on the first drive, but not on the second:

FM :dl :d2 (NEW)

FM - File Manager Page 14 Detailed Reference

This command would show only those files that existed on the first drive, but were not
found on the second. Again, partspecs and parameters could have been used.

As seen in both this example and the previous, the files displayed are always those
that exist on the first drive number specified.

One of the most important uses of the Display mode is to preview the results of a Kill
or Move colllTland. Since those commands can greatly affect your files, the Display mode
should be used to determine if the FM command to be used will produce the desired
results. In the description of the Kill and Move parameters, use of the Display mode
will be detailed.

IN THE KILL MODE:

The Kill mode of FM is used to remove files from a specified drive. Like the Display
mode, either one or two drive numbers can be used. A single drive command will use only
partspec information or parameters as criteria to determine which files will be killed.
A two drive command will allow files on a second drive to be used for comparison
purposes, but will still kill files on the first drive specified.

A single drive Kill command can have one of the following forms:

FM :d (KILL,parm,parm, •..)
FM partspec:d (KILL)
FM partspec:d (KILL,parm,parm, .••)

In these single drive examples, it should be obvious that the files to be killed are
all on drive "d", and will be killed as long as they match the user entered partspec
and parameters. When the Kill mode is used in this manner, it is very similar to the
PURGE Library command, although it does provide added partspecing and parameter
capabilities. The real power of the Kill mode can be seen when two drive numbers are
used.

The syntax of two drive Kill command is:

FM :dl :d2 (KILL,parm,parm, .••)
FM partspec:dl :d2 (KILL)
FM partspec:dl :d2 (KILL,parm,parm, •••)

In its basic form, this type of command means "Kill the files on drive dl, only if they
match my partspec and parameter criteria, AND ONLY IF THEY EXIST ON DRIVE d2." Thus,
the FM Kill mode can be easily used to remove duplicate files from disks. As
stated earlier, the NEW parameter can be used to reverse the comparison, allowing FM to
kill files only if they DO NOT exist on the comparison drive. For example, the command:

FM partspec:dl :d2 (KILL,NEW,parm, •••)

would remove FROM DRIVE Dl,
DID NOT EXIST ON DRIVE D2.
parameter is used, the files
drive specified! The second,

those files that matched the partspec and parameters but
The important point to note is that whether or not the NEW
that match the criteria will always be killed on the first
or comparison, drive will never be altered.

When using a two drive Kill command, there is a method to preview the results of a Kill
without actually killing the files. By issuing the command without using the KILL
parameter, the matching files will merely be displayed on the screen. Then if
everything is correct, you can re-issue the command with the KILL parameter included.
Note: when using the Display mode. the files are normally shown sorted alphabetically.
In the Kill mode, the files are shown in the order in which they are encountered on the
disk. If you wish the Display mode to show the files in the order in which they will be
killed, use the parameter (SORT=NO).

FM - File Manager Page 15 Detailed Reference

IN THE MOVE MOOE:

Move mode drive usage is slightly different from the Display and Kill modes in that it
requires a minimum of two drive numbers, and will accept three. The NEW and ABS
parameters will be discussed in this section, as they globally determine which files
wi 11 be moved.

When using two drive numbers, Move is similar to the BACKUP utility using the (Old)
parameter. The format of this type of Move command is:

FM :dl :d2 (MOVE,parm,parm, ..•)
FM partspec:dl :d2 (MOVE)
FM partspec:dl :d2 (MOVE,parm,parm, ••.)

This type of command says "Move the files from drive dl to drive d2, based on any other
criteria I have specified, IF AND ONLY IF THE FILES ALREADY EXIST ON DRIVE 02." This is
unlike the normal Backup-by-files which moves files regardless of their existence on
the destination disk. As an example, let us assume that drive 1 contains a disk with
files you wish to move, and drive 2 contains a newly formatted disk containing no
files. If you were to issue a "FM :1 :2 (MOVE)" command, no files would be moved to
drive 2, since there are no existing files on drive 2! There are two ways to circumvent
this default "old" parameter. One way is by use of the ABS parameter; the other is by
using the NEW parameter (which invokes the opposite restriction).

The ABS parameter:

The ABS parameter is used to turn off the default "Old" parameter of the Move mode, and
tells FM to move all matching files from the first drive to the second, regardless of
their existence on the second drive. In this manner, FM will act like a normal backup
by files command. The syntax of the command is:

FM : dl : d2 (l>OVE ,ABS)

The use of a partspec and any additional parameters is optional. This command would
tell FM to move all the files from drive "dl" to drive "d2", whether or not they
already existed on drive "d2".

The NEW parameter:

In a two drive Move command, the NEW parameter means "Move those files from drive :dl
to drive :d2, IF AND ONLY IF THEY DO NOT ALREADY EXIST ON DRIVE :d2". The syntax of the
command is:

FM :dl :d2 (l>OVE,NEW)

This type of command has many practical uses, such as updating an archive disk with new
files. Any files that already exist on the destination disk will not be touched.

THREE DRIVE MOVE COMMANDS:

The three drive Move command allows the movement of files from one disk to another,
based on the results of a comparison with a third drive. One of the most practical uses
of this type of command is to move groups of files from a large drive to smaller one,
based on comparison to another smaller drive. In this manner, the file extension or
date can be readily used to create very specific archive or backup sets of disks.

FM - File Manager Page 16 Detailed Reference

When using the Move mode of FM with three drive numbers, it is important to remember
the fo 11 owing:

The first drive number is always the SOURCE of the files to be moved.

The second drive number is always the DESTINATION of the files to be moved.

The third drive number is always the COMPARISON drive to determine the files to be
moved.

The basic three drive Move command syntax is:

FM :dl :d2 :d3 (MOVE,parm, ...)
FM partspec:dl :d2 :d3 (MOVE)
FM partspec:dl :d2 :d3 (MOVE,parm, .••)

In the three drive Move mode of FM, the NEW parameter is valid although the ABS
parameter is not. The three drive Move command wi 11 function as fa 11 ows:

NEW parameter not used - only those files that exist on both drive "dl" and "d3"
will be moved from drive "dl" to drive "d2".

NEW parameter was specified - only those files that are on drive "dl" but NOT on
drive "d3" will be moved from drive "dl" to drive "d2".

As can be seen from these examples, the third, or comparison drive, will never be
changed.

IN THE REMOVE MOOE:

The Remove mode is a "Move then Ki1l 0 command. The Remove mode command line syntax is
the same as that of the Move mode with the exception of using the REMOVE, rather than
the MOVE, parameter. The drive usage is identica.l.

In two drive Remove commands, files are moved from the first drive to the second, and
then killed on the first drive. Partspecs and parameters can be used to identify the
files to be acted upon.

In three drive Remove commands, files will be moved from the first drive to the second
based on a comparison of the third drive, and then the files that were moved will be
killed on the first drive.

The ABS parameter:

As with the Move mode, the ABS parameter is valid only with two drive commands, and
means "move all files that match the partspec and/or parameters from the first drive to
the second, and kill every file on the first drive after it has been moved."

The NEW parameter:

Again, this parameter means the same to Remove as it does to Move. However, any
matching files will be killed on the first drive after they have been moved to the
second.

FM PARTSPECING AND WILDCARDING

Besides the ability to use multiple drives for comparison purposes, FM provides another
very powerful file inclusion/exclusion feature by its use of partspecing and wildcard
characters. A partspec, or "partial file specification", means all or part of a file

FM - File Manager Page 17 Detailed Reference

specification. One of the main uses of partspecing is to select a group of files that
have similar names or extensions, or both. For FM purposes. a standard filespec is
defined as:

FILENAME/EXT

FILENAME is from l to 8 alphanumEiric characters, the first of which must be
alphabetic. All fi !es must have a filename.

/EXT is an optional extension
must be alphabetic.

1 to 3 alphanumeric characters, the first of which

(Alphanumeric - consisting of the letters A-Z, and the numerals 0-9. No other
characters may be used.)

Since the four FM modes (Display, Kill, Move, and Remove) are all very similar in their
command structure, the examples in this section will be valid no matter what mode is
used. The next section of the documentation will explain the differences between using
single versus separate filenames and extensions.

PARTSPECING: Use of Filenames

The FM utility allows the use of either a filename (inclusion) or NOT filename
(exclusion) to be used to specify a particular group of files. The format for this type
of partspecing is:

FILENAME (Inclusion - means include all files that match this filename)

-FILENAME (Exc1usion - means exclude all files that match this filename}

A filename used as a partspec can be from 1 to 8 characters long. One very important
point to remember is that checking for a match will be done only on the number of
characters specified in your filename partspec. For example, if an FM command of C0:0
were used, all of the following files would match, assuming of course that they were on
drive 0:

COMP/CMD co CONF IG/SYS CONTINUE

As shown in this example, neither the number of characters AFTER the partspec nor the
file extension are normally taken into consideration when matching a "filename only"
partspec (this can be changed, however, as explained later in the Wildcard and Separate
Extension sections). The main purpose of this type of filename partspecing is to choose
a group of files that all start with a common prefix; a very handy feature when
examining a disk that contains files from more than one application. The same method of
matching holds true when using a filename as an exclusion spec. Thus, if an FM command
of -CO were used, all files would be shown EXCEPT those that started with the letters
co.
It is also possible to specify only files that have no extensions. To do so, use a
filename partspec as follows:

FILENAME/ or -FILENAME/

By using a 11 / 11 character with no following extension, FM assumes that only those files
with no extensions should be matched. Again, the filename may be either an inclusion or
an exclusion spec.

FM - File Manager Page 18 Detailed Reference

IN SHORT: Using a FILENAME or -FILENAME as a partspec will find a match with any
file that starts with the partspec, and does not care what extension, if any, the
file has. The FILENAME/ partspec is used to find files with no extensions.

NOTES: Much greater selectivity is possible by including wildcard characters in the
filename partspec, or by including a separate extension, as will be explained later.

PARTSPECING: Use of Filename/Ext

Using a FILENAME/EXT partspec in an FM command is very similar to using a filename
only. The only difference is that the file's extension must match the /EXT specified.
It is important to understand that both a filename and extension will be evaluated the
same way; only the number of characters used in the FM command will be considered when
searching for a match. Thus a command such as CO/A would find a match:

CO/A CO/ASM CONFIG/ART COMP/ASM

As this example shows, any characters in excess of those used in the command are
disregarded, either in the filename or extension. Again, using the NOT character will
exclude any files that match. Thus a command of -CO/A would show files except those
that had a filename starting with CO, and that also had an extension starting with A.

SUMMATION: Using a FILENAME/EXT or -FILENAME/EXT as a partspec considers only as many
characters as were specified in the filename and extension.

PARTSPECING: Use of /Ext

Just as files can be included or excluded according to their filenames, their
extensions may also be used as the criteron. Again, only as many characters as are
entered in the /ext partspec will be considered for matching purposes. Thus, using the
FM command /C:0 would match files with extensions such as:

/CMD /CCC /COM /CIM /CE JC

The more specific the partspec used in the FM command, the more specific the matching
will be. Using the extensions displayed from the previous example, a partspec of /CC
would only match the /CCC extension.

It is also allowable to enter a NOT extension partspec. For example, using an FM
command of -/CMD would display all files EXCEPT those that had an extension of /CMD. A
command of -IC would exclude any files that had an extension that started with /C, etc.

,

IN SHORT: The /EXT partspec is similar to the FILENAME partspec in that is uses
only the number of characters entered when searching for a match in an extension,
and that the NOT character can be used. However, the filename will not have any
effect when using an extension-only p~rtspec.

PARTSPECING: Using separate Filename and Extension

As the previous sections have demonstrated, anytime a single filename/ext partspec is
specified, both the filename and the extension must match when searching for inclusion
or exclusion files. The FM utility does, however, provide a way to specify a separate
filename and extension in the same command. Moreover, either the filename or the
extension or both may be NOT specifications. Refer to the following table, taking
particular note of the comma separating the filename and extension:

FILENAME,/EXT
-FILENAME,/EXT

FILENAME,-/EXT
-FILENAME,-/EXT

FM - File Manager Page 19 Detailed Reference

Using separate filenames and extensions is very similar to the normal partspecing
previously described as far as search·lng for matches is concerned, using the normal FM
"two part" procedure. The filename is first checked for a match, and then the
extension. By using a comma to separ,rte the filename and extension, it is possible to
use either part SEPARATELY as an inclusion or exclusion criteria, totally independent
of the other part. For example, suppose you had a disk in drive 1 that contained the
following files:

FMl~/ASM
FM/CMD

FMll/ASM
FM2/TXT

FMl/CMD
FM12/ ASM

FMl/TXT

Looking at the file extensions, it appears that there are three types of files on this
disk; /ASM assembler source files, /CMD object code files, and /TXT text documentation
files. Also. the files all have filenames starting with the letters FM. To act on any
one group of files, a command such as:

FM fm/txt:l
FM /txt:l

could be used to show all /TXT files. If it were desired to move only the /TXT files to
another drive, a command such as:

FM fm/txt:1 :2 (MOVE)
FM /txt:l :2 (MOVE)

could be used. Now consider the case where you want to move all of the files except the
/TXT files. This could be done with the command:

FM -/txt:1 :2 (MOVE)

So far. the need for using the separate filename and extension feature has not been
demonstrated. This is because of the small number of files that are the example disk.
In normal practice, several groups of files are stored on the same disk. Consider the
following revised display of a disk in drive 1:

FM10/ASM
CON/CMD

FMll/ ASM
CON/TXT

FMl/CMD
TEST/ASM

FMl/TXT
TEST/TXT

In cases where multiple file groups are stored on the same disk, the separate filename
and extension feature could be used to match specific groups of files:

FM fm,-/txt (Match all files starting with FM except those that have a /TXT
extension)

FM -fm,/txt (Match al1 files with a /TXT extension except those that start with
FM. In this case, CON/TXT and TEST/TXT would match)

FM -fm,-/txt (Match al 1 files that do not start with FM and that do not have a /TXT
extension. In this case, CON/CMD and TEST/ASM would match)

IN SHORT: The separate filename and extension are generally used when it is desired
to match a group of files on a disk that contains many different file types.

FM - File Manager Page 20 Detailed Reference

WILOCAROING:

Wildcard characters, or wee, can be used in filename and extension partspecs to specify
different groups of files. In FM, three wee are allowed:

$ - The "mask" character
* - The "instring" character
! - The "truncate" character

The $ wee can be used in combination with the * and the ! . However, the * and the are
mutually exclusive.

WILDeARD: The$ character

The $ mask character is used as its name implies;
positions when searching for a match. Its function
wee. It is used primarily to search for a particular
a known offset. For example, consider the filespec:

TEST101/V21

to mask, or disregard, character
is identical to the normal LDOS $
part of a filename or extension at

This filespec would be matched by using any of the following partspecs in an FM command
(These are just some of the possible partspecs):

$$ST1 $$$$101 $$$$lgl/V21 /$21
TST01/$$1 TEST1/V$1

As can be seen from these examples, the$ character is used as a mask, or "don't care"
character. No matter what character is in the filename or extension at that point, it
will always be considered a match. This type of wildcarding is very useful for files
that have common groups of characters at a known place in the filename or extension. It
should also be kept in mind if creating files for an application. For example, suppose
a home checkbook balancing program used files with the filenames consisting of the
first three letters of the month followed by the two digit year. A data disk for this
program might contain the following files, among others:

JAN83/eKB MAR83/CKB APR83/CKB FEB83/CKB

Using a partspec of $$$83/CKB, or even $$$83, would match these files. In cases where
the desired field to match (in this case, the "83") is not at the same offset in the
filename or extension, the* wee can be used to find a match.

Note that in none of the previous examples was the$ ever used as the last character in
the filename or extension. Although this would be permissible, it would serve no
purpose whatsoever. Remember that normal partspecing only searches forward for as many
characters as were entered on the command line (i.e. "FMl" would match FM101, FM15,
FMlTEST, etc.), thus, any trailing$ WCC would be unnecessary. If a specific LENGTH of
filename or extension needs to be specified, see the ! wee explanation.

IN SHORT: The$ character is used to mask off, or cause a "don't care" condition
for characters as certain offsets in the filename or extension. It should not be
used as a trailing character.

NOTE: The* and ! wees can also be used with the$, and provide certain other matching
features.

FM - File Manager Page 21 Detailed Reference

WILDeARDING: The* character

The * is the "instring" wee (instring means "in the string"). It is used to match a
filename or extension partspec no matter where that partspec is embedded in the target
filespec. For example, consider the FM co11111ands:

FM *ba:1
FM /*ba:1

The first co11111and means "match all files on drive 1 that have the letters "BA" anywhere
in the filename, and would match files such as BASie/eMD, TBA/eMD, MOMBA, NEWBAK/DAT.
The second example says "match any file with the characters "BA" anywhere in the
extension, and would match files like TEST/BAS, XMPL/TBA, ALLIN/BAK.

The length of the partspecs is limited to the* plus 7 characters for a filename, and
the* plus 2 characters for an extension.

The Not character 11 - 11 can also be used with the*, in co11111ands such as:

FM -*ba:1
FM -/*ba:1

These types of co11111ands would exclude any files that had the characters "BA" anywhere
in the filename or extension. As listed in the PARTSPEeING section of the
documentation, the following FM co11111ands can also use the* character:

FM -*filename/ext
FM -*filename,/*ext
FM *filename,-/*ext
FM -*filename,-/*ext

The * wee can also be used with the$ wee. This type of implementation is best
described through example:

FM *$$te
FM /*$a

In the first example, the co11111and states "match those files that have a 4 character
string ending in TE anywhere in the filename". Files such as SEPTEMBR/82, MYTEST, etc.
would match. The second example means "match any file with a two character string
ending with A in the extension." Files such as TEST/BAS, XMPL/TBA, etc. would match.
Practical uses of the* and$ combination will depend upon the files that are to be
manipulated. When creating files (such as with a word processor, mailing list program,
etc.), keep in mind this feature of FM and make file groups that are easily displayed,
moved, or killed.

IN SHORT: The* character is used to provide an instring, or sliding field type of
comparison function for matching filenames or extensions. It can be used along with
the $ wee.

WILDeARDING: The! character

The ! character is used to truncate, or cut off, the search for a match of a filename
or extension partspec. Its primary use is to specify a particular length of partspec.
It is best demonstrated through example; consider the following FM co11111and using a
truncated filename:

FM te!

FM - File Manager Page 22 Detailed Reference

This command would match files such as:

TE/CMD TE TE/BAK TE/X3

but not the files:

TEST TERRA/101 T/BAK

As the example shows, this type of partspec is used to match files that have an EXACT
length of two characters, with those two characters being "TE". Any files that with
filenames shorter or longer that two characters will not match. The same will be true
if the partspec is an extension:

FM /CM!

This command would match files such as:

TEST/CM MYCMD/CM NOWAY/CM A/CM

but not files like:

TE/CMO OVLY/e DATA/CMA READ2/COM

As shown, only those files that have exactly two characters in the extension, and those
two characters being "CM", will match.

The Not character 11 - 11 may also be used with the ! wee to specify an exclusion partspec.
Commands such as:

FM -te!
FM -/te!
FM -this,/c!

are all acceptable, as well as the other command forms described in the previous
Partspecing sections.

To specify all files that have a definite length of filename or extension, the$ wee
can be used along with the ! wee in the following manner:

FM$$! (All files with exactly two characters in the filename, regardless of any
extension)

FM $$!/ (All files with exactly two characters in the filename, as long as they
have no extension)

FM/$$! (All files with exactly two characters in the extension)

The Not character"-" can also be used to exclude matches when using the
as:

wee, such

FM -TE! (Exclude any files that have TE as the only characters in the filename)

FM -/$! (Exclude any files that have a single character extension)

FM-$! (Exclude any files that have a single character filename)

IN SHORT: The ! character is used to specify an exact length of filename or
extension when searching for a match. It can be used along with the $ character.

FM - File Manager Page 23 Detailed Reference

FM PARAMETER OE§CRJPTIQNS:
Besides the mode parameters discussed earlier, FM has many other parameters to help
select a certain group of files. perform directory updating functions, or to let FM run
under control of the LOOS JCL (Job Control Language).

DISPLAY FORMAT PARAMETERS:

lijAl location):_

The A parameter is used with the Display mode (the other modes automatically turn this
parameter on). The normal Display mode will show the files in alphabetical order listed
across the screen, such as:

FILENAME/EXT FILENAME/EXT FILENAME/EXT FILENAME/EXT

If the A parameter is specified, the files will be shown one per line, with other
information following the filename and extension. The format would be:

FILENAME/EXT IMM/DD/YYI 0000 R

aaaaaaaaaaaa *bbbbbbbb* cccc d

aaa This field will be the filename and extension.

bbb This field is the file 1 s Mod date. This is the date of creation, or the last
date the file was written to.

* The asterisks represent the "mod status" characters. If the file has been
modified (written to) since it was last backed up, then the characters in these
two positions will be plus signs"+". Otherwise, the vertical bars "I" will be
used as separators.

ccc This field is the total number of "units" in the file. If not changed by
specifying the G or K parameter, this will be the total number of disk sectors
assigned to the file.

d This field will show whether the normal "R" (number of records) mode was used,
or if the G or K parameter was used. It will appear as the letter R, G, or K.

Normally, a Display mode command is done without using the A parameter. However, if it
is necessary to see the additional information, the A parameter can be specified. If
the P (send output to printer) parameter is specified along with the A parm, the
printer output will also be in single line format, and will contain the date and unit
information.

G (Gran) or G=:

The normal "unit" display of FM is in Records, meaning the number of disk sectors used
by a file. The G, or Gran, parameter is used to specify the output as the number of
grans assigned to a file. The main use of this parameter will be when dealing with
disks of different sizes (3", 5", 811 , hard) or different densities (single, double,
hard disk format). Since a gran represents the minimum number of sectors that can be
allocated to a file, consider the following table which shows the minmum number of
sectors (DDEN=Double density, SDEN=Single density):

FM - File Manager Page 24 Detailed Reference

511 Floppy, SDEN - Gran= 5 sectors, 1.2K
5" Floppy, ODEN - Gran= 6 sectors, 1.5k
5" Hard, - Gran= 16/32 sectors, 4/8K

8" Floppy, SDEN - Gran= 8 sectors, 2K
8" Floppy, ODEN - Gran= 10 sectors, 2.5K
8" Hard, - Gran= 16/32 sectors, 4/8K

As seen in this table, there is a wide variance in the number of sectors, or records,
that make up a granule. Thus, a file that contained only 1 record would take up 1 gran
on a disk; however, the total disk space used would vary greatly.

The G parameter should be entered followed by a value representing the number of
sectors per gran. Referring to the previous table, it can be seen that the value for a
5", SDEN Floppy would be 5, and for an 811 SDEN Floppy would be 8, etc. IF the G parm is
used with no value, 6 will be assumed (matching a 511 ODEN Floppy).

When files are to be moved from one type of disk to another, the G parameter can be
used to show the total number of grans that will be needed. Whenever the Display mode
is used, the ending line always will show the total number of units taken up by the
matching files. If the G parameter is used, this unit total will be the number of grans
needed to store the files on a disk of the type having that gran size. By examining the
final display of total grans needed, and comparing it with the number of free grans
available on tha disk, it can easily be determined if the desired files can be moved.
The LOOS Library command FREE, when used to show the free space map of a single drive,
will also show the free granules available on that drive.

K (1024 byte blocks):

Like the G parameter, K can be used to shift the FM output display from the normal
Record mode to show the num6er of K, or 1024 byte IH ocks a file uses. The number of K
will be based on the actual number of records in a file, not on the space allocated to
it on the disk. No partial K will be shown, and any remainder will be rounded up to the
next higher K. For example, a file with six records takes up 1.5K, but will be shown as
2K.

The main use of the K parameter is to help determine the actual space used by files in
a system with many different drive types. Like the G parameter, this can help determine
the actual amount of space needed when moving files between drives. The total number of
K for all matching files will be shown in the final display line. If the A (Allocation)
parameter is used, the K for each individual file will also be displayed.

0 (Sort):

The O parameter is used to turn off the normal alphabetic file Display mode sort. To
use it, issue a command such as:

FM :0 (O=OFF)

Although the Display mode normally shows files sorted alphabetically, the other modes
act on files as they are found while scanning the directory. To allow the files to be
displayed in the same manner, the O parameter can be turned off. This may be desirable
to preview the results of a Kill, Move, or Remove command, seeing the files in their
actual order.

NOTE
Sorting the file specifications requiresacertain amount of free memory. If there is
not enough memory available, FM will not display the files in alphabetical order. This
will be a very unusual occurrence, but can happen if free memory drops below a certain
point.

FM - File Manager Page 25 Detailed Reference

J'., (Printer)

The P parameter provides a way to send the results of an FM command to a printer. In
the Display mode, the fi Jes are normally sent to the printer four across. Each entry
sent will include the filename, the extension (if applicable), and the drive number of
the source drive. If the A parameter is also used, each file will be printed on a
separate line. The file's date, modification status, and size will also be printed. The
size will normally be in total records, but can be changed with the G or K parameters.
ff the P parameter is used in the Kill, Move, or Remove modes, the file display will
also be sent to the printer as if the A parameter was also used.

Q~ON/OFF (Query)

The Q parameter affects the four FM modes differently. In the Display mode, Query is
normally on. A Q•OFF parameter will keep the screen display from pausing as it normally
does every 11 lines, and will display all files non-stop. If the JCL parameter was used
on the command line, it will automatically set Q=OFF for Display mode commands.

With the Kill, Move and Remove modes, the Q parameter lets the user be queried whether
to act on the currently displayed file. For Kill and Remove, the default is ON (query
before a file is killed); for Move the default is off (move files without asking). The
default may be overridden by specifying the desired state of the Q parameter on the
command line. In the Kill, Move, and Remove modes, the following prompt will appear if
Query is ON:

(Y/N/C) ?

Pressing <Y> tells FM to act on the file; pressing either <N> or <ENTER> means to
bypass the file without action. pressing <C> will act on the file and turn OFF the
Query function. FM will continue nonstop from this point.

The user is cautioned against using the Kill or Remove modes with the Q=OFF parameter
until familiar with the way FM operates. Killing files automatically is an easy way to
clean up a disk, but can be disastrous if the wrong files are involved.

FILE ATTRIBUTE PARAMETERS:

The next group of parameters lets the user specify groups of files based on their
directory attribute type or modification status, as well as by a user specified flag
bit. Certain of these parameters use existing information about a file, while others
allow a file's information be changed.

Two parameters, SM (Set Mod flag) and CM (Clear Mod flag) are provided to either set or
clear the modification flags on specified files. Three parameters deal with the "Flag
bit". This bit is also used by the PDS utility (a product of MISOSYS) to indicate PDS
files. LOOS indicates files with this bit set by displaying an asterisk after their
name in a DIRectory display. FB will find all files with the Flag bit set, SFB will set
the Flag bit on matching files, and CFB will clear the Flag bit. By setting either the
mod flag or the user flag bit, files ordinarily dissimilar in filename, extension, or
other attributes may now be easily manipulated as a group.

The PR parameter will find all files matching a specified protection level, 0-7
(corresponding to the levels as described in the LOOS library command ATTRIB). Files
may also be selected based on their visiblity and system status.

FM - File Manager Page 26 Detailed Reference

INV (I)

The INV, or I, parameter means act on only those files that are marked in the directory
as being INVisib1e. These normally would be LDOS Utility files. To view the invisible
files on a disk, issue an FM :d (I) command. One of the reasons for a user to make a
file invisible is to prevent directory display from appearing cluttered. While using
this parameter will find invisible files, it will not change them to visible files.
That function can be performed with the regular LOOS Library command ATTRIB.

The I parameter can be used in conjunction with the VIS and SYS parameters as required
to search for all three file types.

VIS (V)

The VIS parameter means act on only those files that are visible in a directory
display. If neither INVisible nor SYStem are used as parameters, FM will use VIS as a
default. In normal practice, the only files that are not marked as visible will be the
operating system files and utilities, or special user files. Since most file
maintenance is done on visible user programs and data files, and VIS defaults to on,
this parameter will normally not have to be specified.

If it is necessary to deal with all file types, such as when making a copy of a system
disk, use a command such as (V,I) meaning both visible and invisible, (V,S) meaning
visible and system files, or (V,I,S) meaning a11 file types.

SYS (S)

The SYS parameter is used to specify LOOS system files. It can also be used along with
the VIS and INV parameters to specify file groups as needed. Its main use is to allow
the creation or updating of system disks.

When using the S parameter in the Move or Remove mode, FM wi 11 attempt to correctly
place LDOS system files in their required directory slots. If that directory slot is in
use by some other file, FM will abort with an error message. This should not happen
with the 5.1 version operating system, but may occur with the 6.0 version. To avoid any
problems, the S parameter should only be used to move system files to either freshly
formatted disks, or to existing system disks.

If the SYS0/SYS file is moved, FM will also move the System Information Sectors as
described in the operating system's technical documentation. This means that the state
of any sysgened configuration, the state of the power-up date and time prompts, and the
default drive configurations will be moved to the destination disk.

CM_(C1ear Mod flag)

In the Display mode, the function of the CM parameter is very straight forward. It
removes the modification f1 ag from al 1 matching files on the source drive.

The CM parameter cannot be used in the Ki 11 mode. It would make no sense to clear a
file 1 s mod flag when it is about to be removed from the disk.

In the Move mode, using CM will always clear the mod flag on the source and destination
drives. For this reason. the source drive cannot be wr He-protected. or the FM command
will abort with an error.

In the Remove mode, using CM will clear the mod flag on the destination drive. As with
Kill, nothing will be done to the source drive, bec,1use the matching filr1s there will
be removed from the disk.

FM - File Manager Page 27 Detailed Reference

SM (Set Mod flag)

rn the Display mode, using the SM parameter will set the mod flag on every file that
matches the specified partspec and/or parameters on the source drive. One of the main
reasons for setting mod flags is to be able to then use the MOD parameter to move these
files from disk to disk. For example, suppose a disk contained several files to be
moved, but the files did not share common characteristics such as a unique extension,
filename, or mod date. You could use FM to set the mod flag on these files, and then
use an FM : d : d (MOVE ,MOD) command to transfer the files to another disk. This
procedure could be repeated as many times as necessary, because the mod flags will not
normally be cleared by the Move mode.

The SM parameter is not vaild in the Kill mode, because any matching files will be
removed from the disk.

In the Move mode, using SM will set the mod flag on both the source and the destination
drive. For this reason, the source drive cannot be write-protected, or the FM command
will abort with an error.

In the Remove mode, the destination mod flag will be set. Since the source file will be
killed, the SM parameter does not consider it.

FB (Use Flag Bit)

The "Flag" bit is a special mark in a file's directory entry. It can be set or cleared
with the SFB and CFB parameters, respectively. Files that have their Flag bit set will
appear in a normal operating system DIR Library display followed by an asterisk. The
main use of the Flag bit is to allow a group of files to be marked, whether or not they
have any other commom filespec or attributes. This will facilitate moving or killing
these files as a group, without the need to issue many separate commands.

CFB (Clear Flag Bit)

This parameter provides a means to clear the user "Flag" bit discussed in the FB and
SFB parameters. To see files that have this flag bit set, do a DIR Library command and
observe those files that have an asterisk after the filespec.

In the Display mode, using the CFB parameter will clear the Flag bit on any matching
file on the source drive. It, of course, is not valid in the Kill mode, as any matching
files will end up removed from the disk.

In the Move mode, the Flag bit will be removed from both the source and destination
disks. Be sure that the source disk is not write-protected, or the command will abort.

In the Remove mode, the Flag bit will be cleared on the destination disk.

SFB (Set Flag Bit)

This parameter provides a means to set the user "Flag" bit for a file. It can be used
as a means of marking a group of files to be manipulated in a common manner. To see
files that have this flag bit set, do a DIR command and observe those files that have
an asterisk after the filespec.

The section on the SM (Set Mod Flag) parameter gives a discussion of why you may want
to use a special method of marking files.

FM - File Manager Page 28 Detailed Reference

PR (Use PROTection Level)

This parameter provides a way to specify files by their assigned operating system
protection level. These levels are different between the 5.1 and 6.0 versions, so check
the DOS manual to determine what level names correspond to which protection level
numbers. A file's protection level can be changed with the ATTRIB Library command.

In the
matching
password
match the

have a
of a

that

Display mode, this parameter limits the display to those files that
protection level. Normally, this protection is linked with the use
assigned to a file. The different modes will act on only those files
protection level.

The PR parameter is used with a value 0 to 7, with 0 being the least protection (FULL
access, usually the level on user programs and data files), and 7 meaning the greatest
protection (NO access, normally used only on operating system files). If, for example,
a disk contained program files protected as Execute Only, these files could be accessed
with the command:

FM :d (PR=6)

Thus by using the ATTRIB Library command to set common protection levels on files, they
may be manipulated as a group by FM.

DATE SPECIFICATION PARAMETERS:

Three FM parameters deal with a file's date; two of them (DATE and TODAY) are used to
select files based on a date, while the third, (SO), can be used to change a file's
date. The term "date" when used in reference to a file is the mod date - the date the
file was created or last written to. To view the current mod date for any file, the FM
Display mode or the normal DIR Library command can be used, provid"ing the A parameter
is used in either case. For example:

FM TEST :0 (a)
DIR TEST:0 (a)

Either of these two commands will show all files starting with TEST, and will include
the file's mod date, as well as other information. For a further explanation, see the
FM section on the A (Allocation) parameter.

DATE (D)

The date parameter is used to specify a single date or a range of dates that will be
used to determine inclusion of a file. Four forms of the parameter are allowed:

D"'"MM/DD/YY" Files only with the specified date.

D="Ml/Ol/Yl-M2/D2/Y2tt Files with dates between the first and the second,
inclusive.

D="-MM/DD/YY" Files with dates less than or equal to the specified date.

D="r+l/DD/YY- 11 Files with dates greater than or equal to the specified date.

The D parameter may be used in all modes. For example, assume that the current date is
07/10/83. To find all files that have been written to in the last four days, one of the
following commands could be used:

FM - File Manager Page 29 Detailed Reference

FM :d (0="07/07/83-07/10/83")
FM :d (d="07/07/83-")

This command would result in a display of all visible files that had mod dates of July
7th through July 10th, the current date. This same date parameter could now be used
move or kill selected files in the group.

SD (Set Mod date)

The SD parameter is use to set the modification date of specified files. The date can
be set either to the current system date or to a user specified date. The format for
this parameter is:

FM :d (SD) This command will use the current system date.

FM :d (SD"'"MM/DD/YY") This command will use the date string specified by
MM/DD/YY. The restriction on the range of acceptable dates are the same as those
for the operating system.

This parameter is not valid in the K i1 I mode.

In the Move rr~de, using SD will set the date on the destination drive files. The files
on the source drive wi 11 retain their original dates.

In the Remove mode, the date will be set on the destination drive files. Nothing will
be doen to the source drive, as the matching files there will be killed.

TODAY (T)

One of the most common uses of the date parameter is to deal with files that have been
recently modified. In recognition of this, the TODAY, or T, parameter has the ability
to define a range of dates relative to the current setting of the LOOS system date. It
is merely a shorthand form of the DATE parameter. The allowable range is from seven
days previous, to the current date. The format of the T command is:

T This command means files with today's date.

T="n" where "n" is a number 1 to 7; 1 meaning yesterday and 7 meaning seven days
ago.

T="nl-n2" where nl is greater than n2. This command means "from nl days ago to n2
days ago 11 •

T::.: 11 -n" This command means "from seven days ago to n days ago".

T=" n- 11 This command means ".from n days ago to today".

The T parameter can be used in all modes. Again, remember that it defines files with
dates matching the specified range, and is merely a convenient shortening of the DATE
parameter.

FILE MODIFICATION PARAMTERS:

The file modification parameters are used to select either files that have been
modified or files that have not been. Generally speaking, the mod flag indicates that
the file was written to since it was last backed up with the operating system BACKUP
Utility. To determine if a file is considered modified, use an FM Display mode command
with the A parameter, or a DIR Library command. In either case, a Plus sign 11+11 will
appear after every modified file. The FM parameters CM and SM also can be used to clear
or set a file's mod flag.

FM - File Manager Page 3~ Detailed Reference

MOD (M)

The f>l)D parameter can be used to specify only those files that have their "Mod" flags
set. In normal LOOS operation, a file's mod flag will be set any time a file is written
to or changed in any manner. As explained previously, the SM parameter of FM can also
be used to set the mod flag on selected files. Some of the reasons for using mod flags
other than the way the operating system normally does are mentioned in the SM parameter
section.

U (Unmodified)

This parameter can be used to specify only those files that have not been written to or
changed. It, in effect, performs the opposite function of the MOD parameter. As with
the MOD parameter, the SM and CM parameters can be used to change a file's Mod status.

FILE SIZE PARAMETERS:

Two parameters, Limit and Size, can be used very effectively in systems where it is
necessary to move data from large volume drives to smaller ones. While the FM utility
does not provide a way to move a single large file onto a series of smaller disks, it
does give the user an easy means to bypass these large files in Move or Remove
commands, and then see which files were not moved.

LIMIT (LM)

The Limit, or LM, parameter is used to specify a maximum file size. The value for the
Limit parameter will usually reflect the size of the destination disk to be used in the
Mov,e ,mede, and must ,be,,exf)r-essed in ,K (1~24, byte blocks). For example, .,.a~ track,
double density, single sided disk has 174K free after formatting. A 35 track, single
density, single sided disk has approximately 83K free after formatting. Attempting to
move a single file that was larger than the free space on the destination disk would
cause an endless series of "Disk Full - Swap Disks" requests, and the Move would not
proceed past that point. To circumvent this problem, you can use the Limit parameter to
instruct the FM utility to ignore any files that will not fit on a single destination
disk. For example:

FM :0 :1 (f>l)VE,LM=174)

This command tells FM not to attempt to move files larger than 174K, the maximum
available space on a 40 track double density floppy. Once the Move has finished, the
Size parameter can be used to display any files that were above the limit.

SIZE (Z)

The Size, or Z, parameter is used to view files that are larger than a specified
length. This parameter can be used in conjunction with the Limit parameter when moving
files from a large volume drive to multiple smaller disks. The format for the parameter
is:

SIZE=nnn

The "nnn" is the size in K (1024 byte blocks). For example, using a SIZE=174 will
display the files that contained more than 696 record blocks. Like the limit parameter,
SIZE is primarily useful when moving files from large volume disks to smaller ones.

FM - File Manager Page 31 Detailed Reference

JCL PARAMETERS:

The JCL (Job Contro 1 Language) parameters pro vi de a means to run the FM ut i1 i ty under
the control of the LOOS JCL processor. The use of these parameters is necessary due to
the automatic error recovery feature of FM. During certain operations, FM will prompt
the operator if a disk I/0 error has occurred, asking whether to retry the operation,
skip the file in question, or abort the opertion entirely. This unexpected prompt could
cause an active JCL to get "out of sync", and random results could follow. To avoid any
problems, the following two parameters can be used.

JCL=retries

This parameter tells FM that the current operation is being controlled by a JCL file,
and/or lets the operator specify the number of automatic retries to be attempted in
case of an error. Normally, a specific value is used, and can range from 1 to 10. The
format of a command would be:

FM :0 :1 (MV,JCL=3)

If JCL is used with no value, two retries will automatically be done. In either case,
if the retries are not successful, the file will be skipped and the FM operation will
continue. The one exception to this is the occurrence of a "Disk full" error, which
will abort an FM command running under JCL control.

Even when not running under JCL control, the JCL parameter can be used to specify a
number of automatic retries, in case a the operator will be away from the computer
during the operation, and does not wish to be prompted on errors. This will assure that
the operation will complete. The FM final display message will include an extra line if
any files were skipped when running with the JCL parameter active.

ABORT

The ABORT parameter can be used to override the automatic retry function that occurs
when running under JCL control. If ABORT is specified, the occurrence of any error will
abort the FM command, and the JCL processing.

This parameter should be used when it is desirable to abort an operation no matter what
type of error is encountered, such as when making copies of very critical data.

OUTPUT FILE PARAMETERS:

The output file parameters of FM are ENTER, FILE and STRING. They provide a means of
writing any matching filespecs to an ASCII disk file. If desired, the filespecs can be
embedded in a larger ASCII string, with the entire string being written to an output
file. The main purpose of this feature is to create JCL files that can later be
executed to perform a desired function on a group of files.

FILE="filename"

The FILE, or FI, parameter provides a way to generate an optional ASCII file containing
certain user selected information including filename and/or drive numbers during an FM
command. The entire filename and extension can be entered on the command line, or the
FILE parameter can be used by itself. The results will be as follow:

FI="FILENAME/EXT" would use the user specified filename and extension.

FI=11 FILENAME 11 would use the user's filename and add the /JCL default extension.

FI with no value will default to a file named FMOUT/JCL.

FM - File Manager Page 32 Detailed Reference

If an error condition is encountered when writing the output file, a single error
message will be displayed but the FM command in progress will continue. If this
happens, the output file should be considered fatally flawed, and should NOT be used
until it is examined. Probably the best thing to do is to kill it, and try the FM
command again.

STRING="desired output string"

The STRING parameter can be used to specify the line sent to an output file. It allows
for insertion of matching filespecs with and without drive number and password, and can
embed <ENTER> characters in the string. Each string sent will automatically be
terminated with a carriage return. Three special characters are used to accomplish
this. They are:

& Will translate to FILENAME/EXT.PASSWORD:D 1n1r

I Will translate to FILENAME/EXT
; Will translate to <ENTER> (Note that the <ENTER> translation can be assigned to
some key other than the";" with the ENTER parameter).

** The PASSWORD mentioned in this section will only be used in the version for
LOOS 5.1. Those using LDOS/TRSDOS 6.0 can disregard any reference to it. The
PASSWORD referred to will be EZTO, which is a substitute for the LOOS 5.1 master
password.

The STR parameter used without any value (i.e., a command such as FM :0 (FI,STR)), will
force the output string to consist of only the filespec, password, and drive number of
the source drive. Otherwise, any characters included between the quotes will be sent to
the output file, with the special characters being translated as described. For
example, consider the following FM command:

FM data:0 :1 (FI,STR="RENAME & /OLD")

If the file DATAl/ARS matched the command, the resulting ouput file would have the
line:

RENAME DATAl/ARS.EZTO:0 /OLD

Once the FM command had completed, issuing a DO FMOUT/JCL would perform the desired
renaming function.

E (Enter Character)

The E parameter provides a means to designate a character that will be translated into
a carriage return, or "Enter" character, in an output string. This assumes, of course,
that the STR parameter was also used. The default character value is a semicolon ";".
If it is necessary to substitute some other character, the format E=value, or
E="character" can be used. Specifying E=NO will cancel this feature.

The main use of the semicolon or other ENTER character is to create a multi-line output
string for later use. For example, if an FM command was used to find several files
which were to be copied to another disk and then renamed, the following output string
could be used:

FM TEST/NEW:0 (fi ,str="copy & to I :l;rename I :1 /old")

Assuming that two matching files, TESTl/NEW and TEST2/NEW were found on drive 0, the
resulting lines written to the output file would be:

FM - File Manager Page 33 Detailed Reference

COPY TESTl/NEW.EZT0:0 TO :1
RENAME TESTl/NEW:1 /OLD
COPY TEST2/NEW.EZT0:0 :1
RENAME TEST2/NEW:1 /OLD

Any number of embedded ENTER characters can be used, up to the point where the FM
command wi 11 no I onger f i t on a sing 1 e 1 i ne.

FINAL MESSAGE DISPLAY:

When an FM command is finished, an appropriate message will be displayed. The exact
message will depend on the mode (Display, Kill, Move, or Remove) that was selected. as
well as the type of display requested (show Grans, K, or number of Records). In any
case, the last segment of the sign-off message will be the total requested allocation
of all files that matched the FM command line specifications and parameters. When it is
desired to move files from one drive type to another, the total count from a display
mode command can be used to determine how many destination disks will be required.

FM processing can be aborted at any time by pressing the <BREAK> key. If this is done,
you wi11 see the message:

Manual abort requested!

This lets you know that FM aborted before the end of its processing at your request. If
FM finishes the request procedure, one of the following messages will be displayed,
depending upon the mode selected.

Completed with AAA of BBB being matching files, CCC Total
Completed with AAA of BBB being new files, CCC Total

Completed with AAA of BBB specified files moved, CCC Tota1

Completed with AAA of BBB specified files removed, CCC Total

In these messages, the "AAA" represents the number of matching files that were found or
selected. The "BBB" represents the total files on the disk. (Note: the LOOS files
BOOT/SYS and DIR/SYS are never considered in any FM command, and are NOT included in
the "bbb" count). The 11 CCC Total" message will indicate the total Records, Grans, or K
of the matching files. The first two messages wi 11 come at the end of a Di sp 1 ay mode
function. The others will appear after a Move, Remove, or Kill command.

If the JCL parameter was used, and I/0 errors caused a file to be skipped, the
following message will be displayed after the total line:

CAUTION - files bypassed in .JCL mode!

ERROR CONDITIONS AND RETRY CAPABILITY:

When FM is performing a file display, a disk I/0 error will abort the command. If this
happens, the appropriate LDOS error message will be displayed, with an exit to the LOOS
Ready prompt following. No final display message will be shown.

If an error occurs in the Move or Remove modes, FM will not automatically abort, but
instead will give the operator a chance to retry the operation, skip over it, or abort
as desired. This will be done regardless of a Query On/Off condition. Included in the
error prompt message will be the drive the error occured on, the operation FM was
trying to perform at the time, the LOOS error number, and what options the user has.

FM - File Manager Page 34

Open error, Source** nn,
Open error, Dest. ** nn,
Read error, Source** nn,
Write error, Dest.** nn,

nn = The LOOS error number

<R>etry, <S>kip, <BREAK> Abort
<R>etry, <S>kip, <BREAK> Abort
<R>etry, <S>kip, <BREAK> Abort
<R>etry, <S>kip, <BREAK> Abort

If one of these error messages appears, there are three options available. Pressing <R>
will retry the operation. The <S> option will skip over the current file and continue
on with the operation. <BREAK> will abort the FM command entirely. To avoid aborting an
FM command running under JCL control, the JCL parameter will assign a certain number of
automatic retries. Once that number has been attempted, an automatic skip of the file
will occur, and the operation will progress.

DISK FULL

One exception to the error trapping is a "Disk full" error during a Move or Remove
command. If a disk full error is encountered, the following message prompt will be
displayed:

Destination disk full replace it and press <ENTER>

If this message appears, remove the destination disk, replace it with the desired disk,
and press <ENTER>. To abort the move, press <BREAK>. In either case, the last file
displayed on the screen (the one that was caused the disk full error) will have been
killed off the destination disk. If FM is being controlled by a JCL procedure, the
occurence of a disk full error will abort the JCL processing and display the
appropriate error message.

FM - File Manager Page 35

FM HELP SCREEN DISPLAY:

FM has a built in HELP! display function. If incorrect partspecs, drive numbers, or
parameters are used, the offending command line will be shown, along with the Brief
Help Screen listing. This Brief Help listing shows the available parameter
abbreviations and wildcard characters only:

FM - Conditional File Exam/Kill/Move Utility - Ver. x.x.x

Command:

WILDCARD CHARACTERS $=Mask, *=Instring, !=Truncate

A, CK, P, Q, 0, G, K, N, M, U, V, I, S
D, T, SM, CM, SD, Z, LM, PR, SFB, CFB, FB
JCL, ABORT, ABS, MV, Kl, RMV
FI, STR (&, I}, E

The main function of this short Help display is to show the parameter abbreviations to
help jog the memory. Note: the command FM (HELP,P} will send the full Help display to
the printer rather than to the video. The display is:

FM ps:D (PARMS) or FM ps:D :D (PARMS}
FM ps:D (PARMS) or FM ps:D :D (PARMS)
FM ps:D :D (PARMS) or FM ps:D :D :D (PARMS}

for Display Mode
for Ki 11 Mode
for Move/Remove

WILDCARD CHARACTERS: $=Mask, *=Instring, !=Truncate

DISPLAY: A=Allocation, P=Printer, O=Sort, G=Grans, K=l~24 bytes
I=Inv, S=SYS, V=Vis, M=Mod, U=Unrnod, FB=Flag bit, PR=Prot level

SM=Set Mod, CM=Clear Mod, SD=Set Date
SFB=Set Flag bit, CFB=Clear Flag Bit

DATE: D=11 mm/dd/yy-mm/dd/yy11 , T=Today, or T= 11 Then-Now 11

Q=Query before action, N=New files only, ABS=Disregard Old
CK=Check Dest. space when Moving w/New

SIZE: LM=Limit to spec. K, Z=Show over spec. K

AUTO: JCL=Auto retries, ABORT=Quit on error

FILE OUTPUT: FI=11 0utput File Name", STR= 11 0utput string"

STR sub. chars: &=FILENAME/EXT.PSWD:D, !=FILENAME/EXT
E=Character Value for embedded Carriage Return

FM - File Manager Page 36

0 V E R D R I V E

OVERDRIVE is a utility designed to provide "buffering" for a disk drive using part of
an alternate memory bank. Futhermore, System Modules 1, 2, 3, 4, 5, 9, 10, 11 and 12
will be loaded into the alternate memory bank, and will produce results similar to
those gained after executing a SYSTEM (SYSRES). It can ONLY be used on Model 4's and
4P's that have 128K of RAM. Up to two drives may be buffered. When a disk read is
requested from a buffered drive, the entire track will be read into banked memory.
Additional read requests for that track will transfer the data from memory,
eliminating the physical disk access. When a system overlay is needed, it will be
retrieved from alternate memory, again eliminating a physical disk access. In many
cases this will greatly increase the speed of disk I/O. The syntax is:

====================================-·=========================-
OD (parm,parm)

Optional Parameters:

Bl=x B2=y Specify the drive(s) to be buffered,
where x and y represent the drive number.
Either or both may be specified. If
neither is used, prompts will appear for
the drives to be buffered.

REMOVE When used with Bl and/or B2, will disable
the buffering of the specified drive(s).
The disk driver and system overlays will
remain in memory.
When used by itself (without Bl or B2)
all drive buffering will be disabled, the
back bank will be released, and the
memory used by the driver will be freed
(if possible). ·

abbr: REMOVE=R

===
I M P O R T A N T N O T I C E

OVERDRIVE requires the TRSDOS 06.02.00 Operating System for proper operation.

OVERDRIVE Installation

OVERDRIVE requires one free bank of alternate memory (16K for the drive "buffer" and
16K for the system overlays) and approximately 400 bytes of space in low memory for
the disk driver. If there is not sufficient low memory or no back bank is available,
OVERDRIVE will display an error message and the installation will be aborted. If
OVERDRIVE is to be used with other "low" memory drivers/filters (e.g. COM/DVR or
FORMS/FLT), it should be installed first to ensure that enough "low" memory is
available.

When OVERDRIVE is installed, if System Modules have previously been resided in main
memory (via SYSTEM (SYSRES)), an informative message will appear and no System Modules
will be loaded into the back bank. This will not affect drive buffering, but will
waste memory (the memory taken up by the SYSTEM (SYSRES) and the memory in the back
bank reserved for the System Modules). When OVERDRIVE is active, you will not be
allowed to SYSGEN (if OVERDRIVE is "trapped" in memory but not active, you will be
allowed to SYSGEN - See Removing OVERDRIVE).

OVERDRIVE - SYSRES/Disk Buffering Utility
Page - 1

When OVERDRIVE is entered without specifying either [31 or B2, this prompt will appear:

Enter drive to buffer, <ENT~R> to end

At this time, either 0, 1 or 2 drives may be specified for "buffering''. After the
first drive number is entered the prompt will appear again, and the second ~buffered~
drive may be specified (if desired). If <ENTER> is pressed and no drives are
specified, the driver will be installed in low memory, the alternate memory bank will
be allocated and the system overldy modules will be placed in the back bank, but no
drive buffuing will be done. This ·is useful for "res!:,rvinq" low memory space for the
driver.

During the initial installation of OVERDRIVE (i.e. if the driver is
present), the <BREAK> key may be used to terminate the installation. The
NOT be installed in this case, and the back bank wil I not be allocated.

not already
driver wil1

Bl and B2 may be used on the command line to enable d,sk bufferi
drives. Installation of OVERDRIVE when using Bl and B2 is identica
OVERDRIVE with no parameters, except there will be no drive prompts.

on one or two
to installing

If OVERDRIVE has been installed and fewer than 2 drives are buffered, additional
buffered drives may be specified at a later time. This is done in the same manner as
initial installation.

Only drives that are enabled may be buffered. If you at
drive, an appropriate error message will be displayed.

Removing OVERDRIVE

to buffer a disabled

The buffering operation for a specific drive may bE! disab ed by sing a "drive"
parameter (Either or Both Bl and 82) along with the REMOVE parameter. This will not
affect the buffering of "non-removed" drives, and wi 1 1 not affect the us~ of the
system overlays from the back bank.

Using the REMOVE parameter without specifying Bl or 62 will disable all drive
buffering, release the alternate memory bank and attempt to remove the low memory
driver. Informative messages will appear showing the operations which were performed.

If OVERDRIVE is "trapped" in memory, the alternate memory bank
the "trapped" memory taken up by OVERDRiVE wi 11 not be "freed
case, OVERDRIVE wi l 1 occupy the same "trapped" memory
re- i nsta 11 ed.

When to use OVERDRIVE

will be released but
up". If this is the

allocation if later

OVERDRIVE can greatly speed up processing of information that is read from a disk
(especially a floppy disk). There will be a speed increase in all systems by having
the system modules "resident" in the back bank. This will eliminate a disk access on
any system overlay request. Piease note that the "Library" moduks (SYS6, 7 and 8)
cannot be resided, and entering a library command (such as DIR) w 11 cause a physical
disk access.

The greatest increase in speed will result when a disk file is being accessed
sequentially from a "buffered" drive (e.g. Record 1 is read first, followed by Record
2, Record 3, etc.). If a file's records are being read in a random order, drive
buffering should not be enabled, as it may actually slow down processing (OVERDRIVE
can still be used to reside the system overlays .

Library commands and utilities that do their own buffering (such as COPY and BACKUP)
will not show a speed increase when used with OVERDRIVE (but in most cases will not
show a decrease in speed either).

OVERDRIVE - SYSRES/Disk Buffering Utility
Page - 2

In certain cases,
sequentially from
executing TRSDOS
overall operation.

it may be beneficial to buffer drive 0 (e.g. when reading data
drive 0). However, for the more "routine" operations (such as

Library and Utility commands), buffering drive 0 may slow down

SPECIAL CAUTIONS

If OVERDRIVE is to be used with "other" disk drivers (such as LS-DiskDisk, MemDisk or
a hard disk driver), OVERDRIVE should be the LAST driver installed on the drive (do
not confuse this with installation - OVERDRIVE may be installed in memory without
having any drives buffered). For example, if you wish to use OVERDRIVE with
LS-DiskDisk, install the DiskDisk driver first, followed by OVERDRIVE.

There are some things that should NEVER be done when using OVERDRIVE. These are:

1) Performing the TRSDOS Library command SYSTEM (SYSTEM=n) if either drive 0
or driven is buffered. If you need to change your "System" drive, you MUST
disable the buffering for BOTH drives before doing so.

2) Buffering both the "outer" and "inner" drive when LS-DiskDisk is used
(Note: The "outer" drive is the actual physical drive. The "inner" drive is
the DiskDisk file which is acting as a drive). Either the outer drive or the
inner drive may be buffered. Buffering BOTH at the same time will cause
unpredictable results (more than likely a system "hang up" when the inner
drive is accessed).

3) Performing a DEBUG Read or Write operation on a buffered drive. OVERDRIVE
uses the same area of memory that DEBUG uses when a read/write operation is
done. Using DEBUG to read/write a buffered drive may cause a system "crash".

Technical Notes

One final word about OVERDRIVE concerns the "logging" in of a new diskette in a
buffered drive. When accessing the directory (or track 0), no buffering will be done,
and the "current" buffered information will be marked as "old". This will force the
next "read" to perform physical I/O, and will prevent any "old" buffered information
from being used. In most cases, diskette swapping will present no problems.

Examples

The following command could be used to install OVERDRIVE and enable buffering on
drives 2 and 4.

OD (Bl=2,B2=4)

If drives 2 and 4 are currently buffered and you wish to disable the buffering for
drive 4, this command could be used:

OD (Bl=4,REMOVE)

To disable all drive buffering, release the back bank and attempt to de-allocate the
memory used by OVERDRIVE, use this command:

OD (R)

OVERDRIVE - SYSRES/Disk Buffering Utility
Page - 3

The OVERDRIVE package
tested to work with
operating system is a
Corporation. TRSDOS is

is a product of Logical Systems, Inc. It has been desiqned and
the LS-D0S/TRSDOS 6.2 operating systt,m. The LS-DOS/TRSDOS 6.2
product of Logical Systems, Inc., and is licensed to Tandy
a trademark of Tandy Corporation.

This package is sold on an "as-is" basis. Logical Systems. Inc. makes no expressed or
implied warranty of any kind with regard to the software or documentation. Under no
circumstances will Logical Systems, Inc. assume any liability for actual, incidental
or consequential damages resulting from the use of this package. Futhermore, under no
circumstances will Logical Systems, Inc. assume any liability for actual, incidental
or consequential damages resulting from the use of the LS-DOS/TRSDOS 6.2 operating
system.

From time to time, updates to this product may become available for a nominal charge.
Customer Service information on this product and any available updates may be acquired
by contacting Logical Systems, Inc. at the following address:

Logical Systems, Inc.
8970 N. 55th Street
P .0. Box 23956
Milwaukee, Wisconsin 53223

(414) 355-5454

The entire OVERDRIVE package and manual is Copyrighted 1984 by Logical Systems, Inc.

OVERDRIVE - SYSRES/Disk Buffering Utility
Page - 4

PRO-CURE/CONV-CPM - CP/M to DOS File Transfer Utility

Authored and copyrighted 1981, 1983 by Richard N. Deglin and Roy Soltoff. All
rights reserved. PRO-CURE/CONV-CPM is published by MISOSYS, Alexandria, VA.

TABLE OF CONTENTS

General Information •• • • • 2

Distribution Diskette • • • • • 2

. 3 Supported CP/M Disk Formats.

The PRO-CURE/CONV-CPM Menu • • 4

Command Details 5

Running PRO-CURE/CONV-CPM Fron DOS Ready

Error Messages
. 12

•• 15

Note: CP/M is a trademark of Digital Research, Inc.
IBM is a trademark of International Business Machines Corp.
LOOS is a trademark of Logical Systems Incorporated
MAX-80 is a trademark of Lobo Systems, Inc.
TRSDOS and TRS-80 are trademarks of Tandy Corp.

PRO-CURE/CONV-CPM Utility
- 1 -

PRO-CURE/CONV-CPM - CP/M to DOS File Transfer Utility

GENERAL
=======

PRO-CURE/CONV-CPM is a powerful tool which allows you to transfer files
from various CP/M-formatted diskettes onto selected TRSDOS or LOOS-formatted
disks. Nineteen different CP/M formats are directly supported under the
PRO-CURE/CONV-CPM transfer utility. You can obtain CP/M disk directories,
transfer files, and execute DOS commands easily and rapidly from the
program's menu; these functions are also executable directly from DOS Ready.

DISTRIBUTION DISKETTE
===============~=====

This documentation covers the operation of both the LOOS 5.1 version
(CONV-CPM) and the TRSDOS 6.x/LDOS 6.x version (PRO-CURE). The CONV-CPM
utility is provided on a 35-track single density data diskette and is
operational, under LOOS 5.1.x, on the TRS-80 Models I, Ills and 4, and on the
Lobo MAX-80. Certain CP/M formats may not be supported on the Lobo LX-80
Model I expansion interface [specifically 512-byte sector formats]. The
PRO-CURE utility is provided on a 40-track single density data diskette and
is operational under TRSDOS 6.x on the TRS-80 Model 4 only.

PRO-CURE/CONV-CPM Uti 1 ity ·
- 2 -

PRO-CURE/CONV-CPM - CP/M to DOS File Transfer Utility

SUPPORTED CP/M DISK FORMATS
--

The following CP/M single-sided diskette formats are directly supported
by PRO-CURE/CONV-CPM. No double-sided formats are readable. All formats are
5-inch mini-floppy, 35- or 40-track, unless specifically noted otherwise.

1) Cromemco Z-2 double-density
2) DEC VT-180 double-density
3) Heath/Zenith H89 single-density, soft-sectored
4) Heath/Zenith ZlOO double-density
5) Holmes VID80 double-density
6) IBM Personal Computer CP/M-86 double-density
7) Kaypro II double-density
8) LNW80 double-density
9) Lobo MAX-80 5-inch double-density

10) Lobo MAX-80 8-inch double-density
11) Memory Merchant Shuffle Board double-density
12) Montezuma Micro Model 4, double-density, 256-byte sectors
13) Morrow Micro Decision double-density
14) NEC PC-8001A double-density
15) Omikron Mapper I single-density
16) Osborne One single-density
17) Standard IBM-3740, 8-inch single-density, CP/M format
18) Xerox 820-1 single-density
19) Xerox 820-2 double-density

PRO-CURE/CONV-CPM Utility
;.. 3 - .

PRO-CURE/CONV-CPM - CP/M to DOS File Transfer Utility

THE PRO-CURE/CONV-CPM MENU
===================•=••···

The PRO-CURE/CONV-CPM utility is executed from DOS Ready by simply
typing the following connand:

CONVCPM<ENTER>
or PROCURE<ENTER>

[LOOS 5.1.xJ
[TRSDOS 6.xJ

The PRO-CURE/CONV-CPM connand menu will then be displayed:

CP/M disk type is not set

Control function : <S>et CP/M disk type
<D>isplay CP/M disk directory
<T>ransfer files from CP/M to DOS
<C>onnand DOS
<E>xit to DOS
(S,D,T,C,E)? >

The first line of the menu indicates which CP/M format you have selected.
for operations. Initially, this type is not set.

Connands are entered on the prompt line. They may be typed, in either
UPPER-case or lower-case, as any one of the single letters surrounded by
brackets 11<> 11 , fol lowed by <ENTER>. The <BREAK> and <BACKSPACE> keys may be
used for correction as necessary.

PRO-CURE/CONV-CPM Utility
- 4 -

PRO-CURE/CONV-CPM - CP/M to DOS file Transfer Utility

COMMAND DETAILS

The following sections describe the function and operation of all
PRO-CURE/CONV-CPM commands identified in the menu.

<S>et CP/M disk type

The <S>et command clears the screen and displays a menu of CP/M formats,
any one of which may be selected for subsequent operations:

<SB> Standard CP/M; SSS0,8 11 <OM> Omikron Mapper I; SSS0,5 11

<Xl> Xerox 820-1; SSSO <X2> Xerox 820-2; SSDD
<LS> Lobo MAX-80; SSDD,5 11 <LB> Lobo MAX-80; SSDD,8 11

<KA> Kaypro II; SSDD <OS> Osborne-1; SSSD
<VT> DEC VT-180; SSDD <M4> Montezuma Model 4; DD,256
<PC> IBM PC CP/M-86; SSDD <NE> NEC PC-8001A; SSDD
<H8> Heath H89; SD,soft-sector <Zl> Zenith ZlOO; SSDD
<CR> Cromemco Z-2; SSDD <LN> LNW80; SSDD,5 11

<SH> MM Shuffle Board; SSDD <HO> Holmes VID80; SSDD
<MO> Morrow MicroDecision; SSDD

Enter type mnemonic?>

The term 11 SSSD 11 refers to single-sided single density media while the term
11 SSDD 11 refers to single-sided double-density media formats. Enter the desired
diskette type by keying the appropriate two-letter mnemonic [the mnemonic is
illustrated within angled brackets 11 <> 11] followed by <ENTER>. You may use
<BACKSPACE> to correct your entry. If you have typed a recognizable entry,
you wi 11 be returned to th.e main menu, and the se 1 ected format wil 1 be noted
at the top of the screen, above the menu. Any invalid entry will be ignored.
Use the <BREAK> key to return to the main menu without changing the CP/M disk
type.

PRO-CURE/CONV-CPM Utility
- 5 -

uPRO-CURE/CONV-CPM - CP/M to DOS File Transfer Ut111ty

<D>1splay CP/M disk directory

The <D>isplay directory command reads the target CP/M diskette and then
displays a directory of all or some of the files on that diskette, sorted by
USER AREA and FILE NAME.

PRO-CURE/CONV-CPM will first prompt you to:

Enter CP/M drivespec or partspec? >

You may answer this prompt in one of three ways. You can simply key in the
number of the drive in which the CP/M diskette is mounted, for example <:1>.
Alternatively, you may enter a CP/M partial filespec, such as <ABC*.ASM:1>.
If you type <BREAK>, however, you will return immediately to the main menu.

A Note On CP/M Partial File Specifications
==

A CP/M PARTSPEC consists of the following fields:

1) An optional FILE NAME of up to eight characters;

2) An optional FILE TYPE of up to three characters,
preceded by a period<.>;

3) A required DRIVE NUMBER (1 through 7), preceded
by a colon<:>.

The FILE NAME and FILE TYPE fields may contain the
standard CP/M-style wi ldcard characters <?> and <*>.
The<?> character will match any other character in
its position. The<*> character must be the last
character in the FILE NAME or FILE TYPE; it causes
an automatic match for all positions in the FILE
NAME or FILE TYPE including and following the<*>

I character.
I
I The FILE NAME or FILE TYPE, if not entered, will
I default to all spaces, unless both are omitted. In
I this case (i.e when a CP/M DRIVESPEC only has been
I entered), they will default to<????????.???>, which
I is equivalent to<*.*>.
'----------------------

The next prompt allows you to specify options in response to the prompt:

Enter parameters or <ENTER> for none?>

These optional parameters may be entered in a fashion similar to DOS command
line parameters. For the <D>isplay directory command, you may select a

PRO-CURE/CONV-CPM Utility
- 6 -

PRO-CURE/CONV-CPM - CP/M to DOS File Transfer Utility

particular CP/M diskette USER AREA, and you can obtain a copy of the CP/M
directory on your printer device. Simply typing <ENTER> will set the
parameters to their default values. As before, keying <BREAK> will return you
to the main menu. The parameters are entered as follows:

USER=nn

PRINT=switch

Select a directory for USER AREA nn,
where nn = 0 through 15. The default
for this parameter is all USER AREAs.
Abbrev: USER=U

Select a printed directory listing.
Entering <ON>, <YES>, or <Y> for switch
will cause the directory to be printed;
entering <OFF>, <NO>, or <N> will suppress
the printout. The default for this parameter
is OFF. Abbrev: PRINT=P

At this point, PRO-CURE/CONV-CPM will read in the CP/M diskette's
directory, sort it by USER AREA and FILE NAME/TYPE, and display all files
which match the desired PARTSPEC and USER AREA. Each file is displayed in the
following format:

u>nnnnnnnn.ttt sssK

where: "u" represents the USER AREA, in hexadecimal (0-9, A-F);
"nnnnnnnn.ttt" represents the FILE NAME and TYPE; and
"sssK" represents the FILE SIZE in kilobytes (xl024).

Up to three files will be shown on each display line. If the PRINT parameter
is OFF, PRO-CURE/CONV-CPM will pause when the screen fills and wait for a
keystroke; you may type <ENTER> to continue the display with the next screen,
or <BREAK> to abort. If the PRINT parameter is ON, the directory display will
scroll continuously without screen pauses.

If the CP/M diskette does not contain any files which match the desired
PARTSPEC and USER AREA, the following message will appear:

No file(s) found!

In any case, when the directory display is complete, you will be
prompted with the message:

Press any key to continue •••

When you have done so, PRO-CURE/CONV-CPM will clear the screen and return you
to the main menu.

PRO-CURE/CONV-CPM Utility
- 7 -

PRO-CURE/CONV-CPM - CP/M to DOS file Transfer Utility

<T>ransfer files from CP/M to DOS

The <T>ransfer files command allows you to move files from your CP/M
diskette to the DOS disk. This is the most powerful command in
PRO-CURE/CONV-CPM.

The first prompt of this command is:

Enter source (CP/M) drivespec or partspec? >

This may be answered in the same way as the corresponding prompt in the
<O>isplay directory command; you can enter a CP/M PARTSPEC, a CP/M DRIVESPEC,
or <BREAK> to cancel the command.

The second prompt asks you to:

Enter destination (DOS) drivespec? >

Answer this prompt with the number of the drive onto which you want the CP/M
files copied, such as <:O>. This must be an enabled DOS drive (hard disk or
floppy). You may cancel the <T>ransfer files command at this point by keying
<BREAK>.

Finally, you will be prompted:

Enter parameters or <ENTER> for none?>

Enter these opt ion al parameters in a fashion similar to DOS c01Tmand line
parameters. For the <T>ransfer files command, you may select a particular
CP/M diskette USER AREA, transfer all OLD or NEW files, or have
PRO-CURE/CONV-CPM QUERY you for the transfer of each CP/M file. Simply typing
<ENTER> will set the parameters to their default values. As described above,
keying <BREAK> wi 11 return you to the main menu. The parameters are entered
as fol 1ows:

USER=nn

OLD=switch

NEW=switch

Select transfers from USER AREA nn,
where nn = 0 through 15. The default
for this parameter is all USER AREAs.
Abbrev: USER=U

Transfer only files which already
exist on the destination DOS disk.
Entering <ON>, <YES>, or <Y> puts this
qualification into effect, while <OFF>,
<NO>, or <N> causes the checking for OLD
files to be skipped. The default for
this parameter is OFF. Abbrev: OLD=O

Transfer only files which do not
exist on the destination DOS disk.
Entering <ON>, <YES>, or <Y> puts this
qualification into effect, while <OFF>,
<NO>, or <N> causes the checking for NEW
files to be skipped. The default for

PRO-CURE/CONV-CPM Utility
\ - 8 -

PRO-CURE/CONV-Ci>M - CP/M to DOS Fi le Transfer Utility

QUERY=switch

this parameter is OFF. Abbrev: NEW=N

Query the user as to whether any given
CP /M file is to be transferred.
Entering <ON>, <YES>, or <Y> puts QUERY
into effect, while <OFF>, <NO>, or <N>
disables this option. The default for
this parameter is ON. Abbrev: QUERY=Q

PRO-CURE/CONV-CPM will then read in the CP/M diskette's directory and
sort it by USER AREA and FILE NAME/TYPE. Each file which matches the desired
PARTSPEC and USER AREA, as entered above, then becomes a candidate for
transfer. Next, PRO-CURE/CONV-CPM will check to see if the file exists on the
destination DOS diskette. If the file does exist, and the OLD parameter is
ON, PRO..-CURE/CONV-CPM continues on to the next step. Similarly, if the file
doesh•t exist, and the NEW parameter is ON, the program continues. If neither
case is met, the file is skipped.

At this point, if the QUERY parameter is ON, you wi 11 be asked:

Convert file u>nnnnnnnn.ttt?

where •u• is the file's USER AREA and •nnnnnnnn.ttt• is the file's NAME and
TYPE. Answering <Y> directs PRO-CURE/CONV-CPM to then transfer the file.
Responding <C> also directs PRO-CURE/CONV-CPM to transfer the file as well as
turn the QUERY parameter· OFF for all files remaining to be transferred. Any
other response wi 11 cause the file to be skipped.

If the QUERY parameter is OFF, the following·message will be displayect:

Converting file u>nnnnnnnn.ttt

Since CP/M. allows special (non-alphanumeric) characters in FILE NAMEs
and FILE TYPEs, PRO-CURE/CONV-CPM must take exceptional action in such cases.
If the QUERY parameter is ON, you will be prompted with:

Source CP/M filespec contains special characters
Enter destination DOS filespec? >

Type in the name of a DOS file, without drive number, into which you wish the
CP/M file's contents to be copied. Typing a <BREAK> at this point will cancel
the <T>ransfer files command and return you to the main menu. If the QUERY
paran;ieter is OFF, the following question will be asked:

Source ·cP/M>filespec contains special characters
Convert this file?

An <N> answer will cause the file to be skipped, while a <Y> answer will
proceed to the next prompt:

Enter destination DOS filespec? >

This is to be answered as described above.

PRO-CURE/CONV-CPM Utility
- 9 -

PRO-CURE/CONV-CPM - CP/M to DOS File Transfer Utility

Finally, if the OLD parameter is OFF and the QUERY parameter is ON and
the destination file already exists, you will be asked:

File exists -- replace it?

Typing <N> forces PRO-CURE/CONV-CPM to skip this file; typing <Y> will cause
the existing DOS file to be overwritten with new data from the CP/M diskette.

Now PRO-CURE will read the CP/M file's contents into memory and then
write the data out to the DOS disk. If the destination DOS disk becomes full
during this process, you will be notified by:

Disk is full! - enter new output disk <ENTER>

Mount a different DOS diskette (one that has sufficient free space on it) in
the destination drive and press <ENTER>. PRO-CURE/CONV-CPM then will continue
its file transfer process. There are two cases, however, when a full
destination disk will terminate the <T>ransfer files command: if the output
drive is a fixed hard disk; or if PRO-CURE/CONV-CPM is executing as part of a
DO command. The message:

Disk is full - can't continue!

will be displayed if this occurs.

The above sequence of events will be repeated for each CP/M file which
matches the desired PARTSPEC and USER AREA, until no more are found. The
following message will then be displayed:

File transfer complete

Alternatively, if no CP/M files existed on the source disk which matched
these qualifications, then the following message will be displayed:

No file(s) found!

In any case, you will be prompted with the message:

Press any key to continue •••

When you have done so, PRO-CURE/CONV-CPM wi 11 clear the screen and return you
to the main menu.

Note that at any time during the file transfer process, pressing the
<BREAK> key will abort the command after the current file has been completely
transferred.

PRO-CURE/CONV-CPM Utility
- 10 -

PRO-CURE/CONV-CPM - CP/M to DOS File Transfer Utility

<C>OIIIDand DOS

The <C>ommand DOS function provides access to operating system conmands
from the menu level. Your DOS requests should be limited to library commands
[a summary of library commands is normally obtainable via the <LIB> DOS
command]. You will be prompted to:

Enter DOS COIIIDand? >

After your command is keyed in, the screen will be cleared and your conmand
line wi 11 be shown at. the top of the video display. The DOS command wi 11 then
be executed. At its completion, you will be prompted with the message:

Press any key to continue •••

When you have done so, PRO-CURE/CONV-CPM will clear the screen and return you
to the main menu.

<E>xit to DOS

This command provides the means to terminate the PRO-CURE/CONV-CPM
session and return to DOS Ready.

PRO-CURE/CONV-CPM Utility
- 11 -

PRO-CURE/CONV~CPM - CP/M to DOS File Transfer Utility

RUNNING PRO-CURE/CONV-CPM FROM DOS READY
==~~============ ======================

Several functions of PRO-CURE/CONV-CPM may be executed directly from DOS
Ready without going through the program menu.

The command line syntax for obtaining the directory of a CP/M diskette
is:

===
<command> <CPM partspec> (<type>,DIR,<parm>,<parm>, •••)

<coomand>

<CPM partspec>

<type>

DIR

USER=nn

PRINT=switch

Type CONVCPM under LOOS 5.1.x
Type PROCURE under TRSOOS 6.x

This is REQUIRED and follows the rules
given in the above description of the
<D>isplay directory menu command.

This parameter is entered as any ONE
of the CP/M formats listed in the CPM
FORMAT TABLE, and is REQUIRED.

This parameter informs the program
to execute the directory function,
and is REQUIRED. Abbrev: DIR=D

Select a directory for USER AREA nn,
where nn = 0 through 15. The default
for this parameter is all USER AREAs.
Abbrev: USER=U

Select a printed directory listing.
Typing <ON>, <YES>, or <Y> for switch
wi11 cause the directory to be printed
while entering <OFF>, <NO>, or <N>
suppresses the printout. The default
for this parameter is OFF.
Abbrev: PRINT=P

===
In all respects, this command executes identically to the <D>isplay

directory command obtainable from the program menu, except that upon
completion you are returned to DOS Ready.

PRO-CURE/CONV-CPM Utility
- 12 -

PRO-CURE/CONV-CPM - CP/M to DOS File Transfer Utility

The command line syntax for transferring files from a CP/M diskette to a
DOS disk is:

===
<command> <CPM partspec> <DOS drive> (<type>,<parm>,<parm>, •••)

<c00111and>

<CPM partspec>

<DOS drive>

<type>

OLD=switch

NEW=switch

QUERY=switch

USER=nn

Type CONVCPM under LOOS 5.1.x
Type PROCURE under TRSDOS 6.x

This is REQUIRED and follows the rules given
in the description of the <T>ransfer files
menu command.

This is REQUIRED and follows the rules given
in the description of the <T>ransfer files
menu command.

This parameter is entered as any ONE of the
CP/M formats listed in the CPM FORMAT TABLE,
and is REQUIRED.

Transfer only files which already exist on
the destination DOS disk. Typing <ON>, <Y>,
or <YES> for switch puts this qualification
into effect while <OFF>, <N>, or <NO> causes
the checking for OLD files to be skipped.
The default for this parameter is OFF.
Abbrev: OLD=O

Transfer only files which do not exist on
the destination DOS disk. Typing <ON>, <Y>,
or <YES> for switch puts this qualification
into effect while <OFF>, <N>, or <NO> causes
NEW files to be skipped. The default for
this parameter is OFF. Abbrev: NEW=N

Query the user as to whether any given CP/M
file is to be transferred. Typing <ON>, <Y>,
or <YES> puts QUERY into effect. Entering
<OFF>, <N>, or <NO> disables this option.
The default for this parameter is ON.
Abbrev: QUERY=Q

Select transfers from USER AREA nn, where
nn = 0 through 15. The default for this
parameter is all USER AREAs. Abbrev: USER=U

===
In all respects, this command executes identically to the <T>ransfer

files command obtainable from the program menu, except that upon completion
you are returned to DOS Ready.

PRO-CURE/CONV-CPM Utility
- 13 -

PRO-CUR£/CONV-CPM - CP/M tb DOS File Transfer Utility

The <type> parameter, as used in the above DOS c011111and lines, is entered
as a mnemonic [or abbreviation of the mnemonic] for one of the nineteen
supported CP/M diskette formats as illustrated in the CPM FORMAT TABLE shown
below.

CPM FORMAT TABLE

Format Type Paraeter Abbrev.

Cromemco Z-2
DEC VT-180
Heath/Zenith H89
Heath/Zenith ZlOO
Holmes VID80
IBM Personal Computer CP/M-86
Kaypro II
LNW80
Lobo MAX-80 5-inch
Lobo MAX-80 8-inch
Memory Merchant Shuffle Board
Montezuma Micro Model 4
Morrow Micro ,Decision
NEC PC-8001A
Omikron Mapper I
Osborne One
Standard 8-inch CP/M format
Xerox 820-1
Xerox 820-2

CROMEM
VT180
HEATH
ZlOO
HOLMES
PC86
KAYPRO
LNW80
LOBOS
LOBOS
SHUFFL
MONlEZ
MORROW
NECPC
OMIKRN
OSBORN
STDS
XEROXl
XEROX2

PRO-CURE/CONV-CPM Utility
- 14 -1

CR
VT
HS
Zl
HO
PC
KA
LN
L5
LS
SH
M4
MO
NE
OM
OS
SS
Xl
X2

PRO-CURE/CONV-CPM _, CP/M to DOS File Transfer Utility

ERROR MESSAGES
==============

Any one of the following error messages may be displayed:

Invalid CP/M filespec, or missing CP/M drivespec!

An incorrect CP/M PARTSPEC or DRIVESPEC was entered in a DOS command
line, or in response to a prompt requesting same.

Invalid or missing DOS drivespec!

An incorrect DOS DRIVESPEC was entered in a DOS command line, or in
response to a prompt requesting same.

CP/M drive can't be :O!

You cannot read a CP/M diskette in drive O.

CP/M and DOS can't be same drive!

A file transfer command requires the CP/M and DOS drives to be
different.

Invalid or missing CP/M disk type!

One, and only one, of the acceptable CP/M format parameters was not
entered in a DOS command line requesting a file transfer.

Parameter error!

An invalid parameter keyword was entered, or an ON/OFF-type parameter
was given an illegal value.

Drive is not 5-inchl or Drive is not 8-inchl

The CP/M drive selected was not of the correct size, given the desired
CP /M format.

Not a floppy drive!

The CP/M drive selected was not a 5-inch or 8-inch floppy.

Not a double-density controller!

The floppy controller in your system cannot support the double-density
CP/M format selected.

Invalid CP/M user area!

The USER parameter was entered with a value not in the range <Oto 15>.

PRO-CURE/CONV-CPM Utility
- 15 -

PRO-CURe~~V-~ - CPJM tQ DOS file Tr111sfer Utility

Insufficient room for c01111111d execution!

You attempted to execute a DOS c011111and from the program menu, but there
is not enough system memor.y ava11able to do this.

System error messages

Various DOS system error mes~ages may also be displayed; please see your
DOS manual for an explanation if such occurs.

PRO-CURE/CONY~CPM Ut111ty
- 16 -

Al TOI SK . .

Al TLD . .

ALTRES

CRLF/FLT

CTLG/FLT

CVT324

OED ..

DOEDIT/FLT

FKEY

IOMON •

MINIDOS/FLT .

NAME

PRTOGGLE

RD40

UNREMOVE

XONXOFF/FLT.

PRO-ESP - Enhanced System Package

TABLE OF CONTENTS

2

4

5

6

7

8

9

• 14

• 16

• 17

• 20

• • • • 21

• • 22

•• 23

• 25

• • 26

All programs: Copyright 1984 by Richard N. Deglin, Riclin Computer Products
and Karl A. Hessinger, MicroConsultants, All rights reserved.
PRO-ESP is published by MISOSYS, Inc., Sterling VA 22170.

LS-DOS is a trademark of Logical Systems Inc.
TRSDOS is a trademark of Tandy Corp.

General Information

This documentation covers the TRSOOS 6.x or LS-DOS 6.x (herinafter
referred to as DOS) version called PRO-ESP. The PRO-ESP package provides the
user with a collection of valuable utility programs and filters designed to
enhance the operation of your DOS. The package of utilities is provided on a
40-track double density formatted data diskette.

ESP - l

PRO-ESP - Enhanced System Package

AL TDISK/CMD

AL TDISK is a disk-drive simulator which creates a 32K or 64K DOS drive
in the second (64K) bank of RAM. AL TDISK uses less than 30 bytes of low
memory and about 100 bytes of high memory, and can be operated with all DOS
products, including a hard disk driver or the 1/0 Monitor. You can load the
DOS system files into the RAM disk, and use it as drive O for very fast
system response. AL TDISK can be operated as any one of the eight allowable
DOS drives, and upon invocation the target drive can be formatted, or
re-enabled if previously formatted.

ALTDISK (parm, parm, •••)

DRIVE•n

FORMAT=sw

HALF•sw

OFF

Specify the drive (1-7) which will
be the RAM disk. Defaults to drive 7.

ON, Y, or YES will format the drive,
and erase all previous information.
OFF, N, or NO will reenable a
previously formatted RAM drive, with
all information intact. Default in ON.

ON, Y, or YES will cause ALTDISK to
use only the 1st bank of alternate
RAM, giving a 32K drive.
Defaults to OFF.

Will disable ALTDISK and reclaim
high memory if possible.

abbr: DRIVE=D, FORMAT=F, HALF=H, OFF=N or NO

AL TDISK will create or re-enable a RAM disk which, in its full
configuration, has 16 cylinders, 4 granules per cylinder, and 4 sectors per
granule. The files BOOT /SYS and DIR/SYS will be on the drive. BOOT /SYS uses
one granule of cylinder O, while DIR/SYS uses all of cylinder 1. This gives
you 59K of free space, with directory capacity for 112 files. A half-size
drive has 8 cylinders containing 27K of free space.

When AL TDISK is invoked, it will inform you, if all goes well, that the
selected drive has either been created or re-enabled:

Drive n formatted and enabled (if FORMAT =ON)
Drive n reenabled (if FORMAT =OFF)

If, when AL TDISK is invoked, the upper alternate bank is currently in
use, then AL TDISK will create a half size (32K) memory disk and will display
an appropriate message.

ALTDISK - 2

PRO-ESP - Enhanced System Package

When you remove AL T0ISK, one of the following messages will be
displayed:

AL TDISK removed, high memory not reclaimed
AL TDISK removed, high memory reclaimed

To use AL TDISK as drive O, first invoke it as some other drive, backup
all system files to it (except SYSO/SYS), and enter the SYSTEM (SYSTEIVl=n)
command to switch the RAM disk to drive 0. For example:

AL TDISK (DRIVE= 7 ,HALF =NO,FORMA T =YES)
BACKUP SYS/SYS:0 :7 (SYS)
REMOVE SYS0/SYS.LSIDOS:7
SYSTEM (SYSTEM:7)

If an error occurs when AL TDISK is invoked, one of the following
messages will be displayed:

Parameter error! - An invalid parameter was entered on the command line.
Reenter the command line with correct syntax.

Requested drive already enabled! - The requested drive already exists in
your system; it may be any type of drive (floppy, hard, RAM disk). Use a
drive which is currently inactive.

Invalid drive number! - A drive number not in the range of l to 7 was
entered.

AL TOISK already active, drive n! - An AL TDISK RAM drive exists in your
system, but it wasn't the requested drive. More than one RAM disk cannot be
active at the same time. To change the drive number of an existing RAM disk,
reboot and invoke AL TDISK with the new drive number and FORMAT =OFF.

Can't - only valid at DOS Ready - You attempted to invoke AL TDISK from
BASIC or a similar situation. Since AL TDISK alters the systerr, high memory
pointer, it can only be invoked from DOS Ready.

Lower alternate bank already in use, AL TDISK not installed! - You
attempted to install AL TDISK when the lower alternate bank was already in
use.

Can't remove drive O! - You attempted to remove AL TDISK when installed
as drive O.

AL TDISK not installed! - You attempted to remove AL TDISK when it was not
active.

Drive code table doesn't point to ALTDISK, can't remove! - AL TDISK has
determined that it has been "filtered"; remove the "filter" first.

NOTE: AL TDISK cannot be SYSGENed.

AL TDISK - 3

PRO-ESP - Enhanced System Package

ALTLD/CMD

The AL TLD utility prov id es a simple way to rapidly save and restore the
entire contents of the alternate RAM banks to and from a disk file.

ALTLD f11espec/RAM (parm}

LOAD

DUMP

Loads the contents of the specified
file into the alternate banks.

Saves contents of alternate banks
to a disk file.

abbr: DUMP=D, LOAD=L

If the DUMP parameter is specified, AL TLD will dump the entire contents
of the alternate 64K of RAM to a disk file. This file may later be loaded
back into the alternate RAM by use of the LOAD parameter.

If the LOAD parameter is specified, AL TLD will load the contents of a
previously dumped file into the alternate RAM banks. AL TLD will check the
length of the specified file, and will only load the file into alternate RAM
if the file is exactly 64K bytes in length; if this is not the case, an
appropriate error message will be displayed and AL TLD will abort. This
safeguard is there if you inadvertently attempt to load a file which is not a
RAM image.

If no parameters are specified, you will be prompted first for the RAM
filespec and then:

<L>oad or <D>ump?

Type <L> to load RAM from the file or type <D> to dump RAM into the file.

If you specify BOTH the DUMP and the LOAD parameters on a command line,
the following message will be displayed and AL TLO will return to DOS Ready:

Can't dump AND load!

While AL TLD is loading or dumping the contents of the alternate RAM, it
will display an incrementing memory page counter (in hexadecimal) as an
indication of its progress. Upon finishing the process, a completion message
will be displayed and you will be returned to DOS Ready.

ALTLD - 4

PRO-ESP - Enhanced System Package

ALTRES/CMD

AL TRES is a replacement for the SYSTEM (SYSRES=nn) command which places
a specified system overlay into the upper alternate bank of memory.

ALTRES (parm, parm •••)

SYSRES=nn

OFF

Load system overlay nn into alternate
RAM.

Disable ALTRES and reclaim memory if
possible.

abbr: SYSRES=S, OFF=N or NO

AL TRES is a replacement for the SYSTEM (SYSRES=nn) command. AL TRES
functions in the same way as SYSTEM (SYSRES=nn) except that the system
modules are stored in the upper alternate bank. AL TRES only uses the upper of
the two alternate banks, so if you wish to also use the AL TDISK driver,
specify the HALF parameter to instruct AL TDISK to only use the lower bank.
AL TRES will display an error message and abort if the upper alternate bank is
already in use. AL TRES will also abort if the SYSTEM (SYSRES) high memory
hook is already active.

Specifying the OFF parameter will instruct AL TRES to remove itself from
the system; and if possible, reclaim the space it used in high and low
memory. Specifying the OFF parameter when AL TRES is not active will cause the
error message:

AL TRES not installed!

to be displayed.

AL TRES may be SYSGENed, with the following in mind. When AL TRES is
initialized via the system boot configuration (@ICNFG) vector at reset time,
it will perform a checksum on the alternate bank to determine if the system
modules which were AL TRESed are still resident. This will allow AL TRES to
recover from a r.eboot cleanly. If the checksums for any of the previously
resident system modules are in error, then the AL TRES high memory hook will
be active, but those particular modules will not be resident. Those modules
which checksummed correctly will be resident again. In any case, you can
invoke a JCL (using AL TRES) which will reload any or all of the desired
system overlays back into the alternate bank.

NOTE: SYS0, SYS6, SYS7, SYSB, and SYS13 (if present) cannot be made resident.

ALTRES - 5

PRO-ESP - Enhanced System Package

CRLF/FLT

The CRLF filter allows the DOS video driver to properly handle carriage
return/linefeed pairs sent to it.

Set *devspec [to] CRLF/FLT
Filter *DO [using] *devspec

There are no parameters. (Use CR for devspec]

This filter is to be installed on the *DO device whenever you wish to
properly handle carriage return/linefeed pairs sent to the video. This is
accomplished by changing every carriage return control character (X'0D') sent
to the filtered device into a beginning of line character (X'lO'); linefeed
characters (X'0A') are passed to the device unchanged. This filter will find
use in conjunction with communications programs, such as COMIV1/CMD, whenever
you are communicating with a remote computer system which transmits CR/LF
pairs at the end of each line. Many mainframe computer systems use this
method to terminate lines of output; without the use of the CRLF/FL T,
reception of a CR/LF pair would cause double-spacing on your video display.
Note that when using COMM with this filter, you must turn on the COMIV1 option
"Accept Linefeed" (<CLEAR-SHIFT><4>, <CLEAR><:>).

CRLF/FLT - 6

PRO-ESP - Enhanced System Package

CTLG/FLT

The CTLG filter will cause your machine to beep every time an ASCII BEL
character is sent to the filtered output device.

Set *devspecl [to] CTLG/FLT
Filter *devspec2 [using] *devspecl

There are no parameters. [Use CG for devspecl J

This filter will produce an audible beep using your machine's internal
speaker whenever an ASCII BEL character (X'07') is sent to the filtered
output device. Normally, the filter is installed on the *DO device; however,
any output device will do. This filter will find use in conjunction with
applications which require the generation of an audible tone.

To demonstrate the use of this filter, install it on the *DO device,
and, using COM M/CMD, type <CTR L><G> with the half duplex option on. Every
time <C TRL><G> is depressed, you will hear a beep.

For convenience, the constants used to generate the beep sound are
located at X'3000' (tone) and X'3001' (duration) in the CTLG/FL T load module.
These are passed to the system @SOUND SVC (the tone in bits 0-2 and the
duration in bits 3-7 of register B) by the filter. The PATCH utility may be
used to easily change these values, and thus the Control-G sound, if your
sound generation hardware supports a variety of tones and/or durations.

CTLG/FLT - 7

PRO-ESP - Enhanced System Package

CVT324/CMD

CV T 321+ will convert your DOS Version 5 BA SIC programs to run on the DOS
Version 6 BASIC.

CVT324 input_file output_file

There are no parameters.

CVT324 will help you convert your old BASIC programs to run on DOS
Version 6 BASIC. The input file must be a BASIC program stored in compressed
format. The output file will be an ASCII file which can be loaded into BASIC.
CVT324 will perform the following conversions on your program:

l) Add spaces around keywords.
2) Strip any trailing information after a CLEAR statement.
3) Convert PRINT ® statements for 80 x 24 screen.

Besides the conversions, any line containing one of the keywords; INPUT,
OUTPUT, POKE, PEEK, or USf-<., will cause the message:

The line above contains a questionable statement

to be displayed. Because of the differences between the BASIC provided with
D,OS Versions 5 and 6, these keywords will probably require changes for the
program to run properly under DOS 6.

Any line containing one of the keywords; SET, RESET, POINT, CLOAD,
CSAVE, or SYSTt::M will cause the message:

The line above contains a bad token and cannot be converted

to be displayed. The above keywords are not supported by the BASIC supplied
with DOS Version 6 and must be changed before the program can be used under
this version of BASIC.

CVT324 - 8

PRO-ESP - Enhanced System Package

DED/CMD

The Disk EDitor allows you to easily modify the contents of any DOS
compatibly formatted disk.

OED :d

There are no parameters.

If the drive number is not specified on the command line then you will
be prompted to enter it. Once a drive has been selected, OED will scan the
drive and then display the first sector on the disk in the following format:

0123456789ABCDEF Byte 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
---------========-=======-===

•• &! •••••••• &$ ••
•••• & ••••••• !p.:
•.. a.Ad.I. E
•• w •••• 0. 1 • •• $
•••••••• w •• q •• r .
. s. : w. . . &# ••
.. K.#x .. : .. w.>"
.. w.% •..•• :.# .. 2
.$! .•.• > •• 2 •.• 2.
.# .. >.! •. U •• > •••
••••• > ••••• > ••••
••• > ••••• • $ •••• H
. w • •• !
.2 .. 6 .. 2

<OO>
<10>
<20>
<30>
<40>
<50>
<60>
<70>
<BO>
<90>
<AO>
<BO>
<CO>
<DO>
<EO>
<FO>

00 lE 26 21 00 10 01 OF 03 CD BB 04 26 24 01 01
01 CD BB 04 26 14 04 OC CD BB 04 FD 21 70 14 3A
D8 07 CB 6F 01 41 64 11 49 lD 20 05 CB A8 11 45
11 CB 77 20 OC CB BO CB 6F 11 27 OF 20 03 11 24
09 FD 7E 03 E6 03 BO FD 77 03 FD 71 04 FD 72 07
FD 73 08 3A 02 04 FD 77 09 5F 06 00 26 23 CD BF
04 ED 4B CC 23 78 E6 20 FD B6 04 FD 77 04 3E 22
81 FD 77 06 25 06 04 CD BF 04 3A 00 23 E6 10 32
OF 24 21 00 13 06 10 3E 10 90 32 EO 07 7E 32 El
07 23 10 F3 3E 04 21 00 15 55 5D F5 3E 09 Fl 01
00 04 CD D6 04 3E 06 CD D6 04 OB 3E 02 CD CE 04
11 00 OC 3E 01 CD CE 04 C3 00 24 lE 00 18 01 48
AF 57 FD E5 FD 21 08 07 CD 03 00 FD El C9 05 El
13 32 DC 07 36 20 05 CS 32 DC 07 ED BO Cl 01 C9
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

-:=-=============~~=============================;==================~=========
Drive : 1 Cylinder : 0 Sector : 0
Sector assigned to : BOOT/SYS

Command :

Byte : X'OO' = X'OO' = 00000000 = 0

The largest portion of the screen is taken up by the display of the
sector buffer. The ASCII characters on the left correspond with the
hexadecimal values to the right. If a byte has a value less than X'20' or
greater than X'7F', it will be displayed in the ASCII section as a period.

Beneath the sector display are two lines of information. The first in
forms you of your current position on the disk. This line contains the cur
rent drive, cylinder, sector and the relative byte position within the sec
tor. Following the relative byte position, the value of the byte at that
position is displayed in hexadecimal, binary, and decimal formats.

OED - 9

PRO-ESP - Enhanced System Package

The second information line contains the name of the file to which the
current sector is assigned. When OED logs in a disk, it creates a map of the
disk's file/sector assign men ts, which are then displayed on this line. OED
does not support the ability to position to a relative sector within a file;
it will only inform you as to which file the displayed sector is assigned.

Before looking at the list of commands that DED supports, it is impor
tant to make note of two items. First, any command may be aborted at any time
by depressing the <BREAK> key. Second, if any command terminates in error,
fa r e x a mp le if y o u a t t e mp t e d to dis pl a y th e pr e v i o u s sector w h en a Ire ad y
positioned at the first sector of the disk, an asterisk will be displayed
after the Command: prompt to indicate that an error has occurred.

List of OED Commands

<A>
<C>
<D>
<F>
<G>
<H>
<L>
<N>
<O>
<P>
<R>
<S>
<V>
<X>
<;>
<->
<ENTER>
<BREAK>

Enter the ASCII modify mode.
Search for an ASCII string.
Select a new drive.
Search for a hexadecimal string.
Go to next occurrence of search string.
Enter the hexadecimal modify mode.
List the current sector to the printer.
Position to next cylinder.
Output a TOF (ASCII X1 0C 1) to the printer.
Position to the previous cylinder.
Reposition to cylinder and sector.
Save the sector buffer to the disk.
Verify sectors.
Exit to DOS Ready.
Position to next sector.
Position to previous sector.
Display menu of commands.
Cancel current command.

Cursor Movement

Left Arrow
Right Arrow
Down Arrow

Move the cursor to the left one position.
Move the cursor to the right one position.
Move the cursor down one line.

Up Arrow
Shift Left Arrow
Shift Right Arrow
Shift Up Arrow

Shift Down Arrow

@nn

Move the cursor up one line.
Move the cursor to the start of the current line.
Move the cursor to the end of the current line.
Move the cursor to the start of the sector buffer.
(Relative byte X'OO')
Move the cursor to the end of the sector buffer.
(Relative byte X'FF')
Depress the@ key followed by the two hex digits
representing the relative sector position to move
the cursor.

OED - 10

Movement Commands

<;> Next sector

PR 0-ESP - Enhanced System Package

Depress the <;> key to advance to the next sector on the disk. If the
last sector of the current cylinder is displayed DED will advance to the
first sector of the next cylinder. If the last sector of the disk is being
displayed DED will place an * in the command field to indicate that it cannot
advance to the next cylinder since it does not exist.

<-> Previous sector

Depress the <-> key to reposition to the previous sector on the disk. If
the first sector of the current cylinder is being displayed DED will position
to the last sector of the previous cylinder. If the first sector of the disk
is being displayed DEO will place an * in the command field and will ignore
the command.

< N> Next cylinder

Depress the <N> key to advance to the next cylinder on the disk. If the
last cylinder of the disk is being displayed an * will be displayed in the
command field and the command will be ignored.

< P> Previous cylinder

Depress the <P> key to reposition to the previous cylinder on the disk.
If the first cylinder on the disk is being displayed an * will be displayed
in the command field and the command will be ignored.

< R> Reposition

Depress the <R> key to reposition to a desired cylinder and sector. OED
will prompt for the cylinder and then for the sector; enter them as decimal
quantities. Depress <Break> to abort and remain positioned at the current
cylinder and sector. If a cylinder or sector is entered which does not appear
on the disk, you will be reprompted for the cylinder or sector.

Modification Commands

<H> Hexadecimal modify

Depress the <H> key to enter the hexadecimal edit mode. To make changes
to the sector buffer, position the cursor over the byte to be changed using
the arrow keys. Any digits entered will be interpreted as hexadecimal values.
Characters which are not legal hexadecimal digits will be ignored. The hex
modify mode can be exited at any time by depressing the <BREAK> key. Remember
that any changes made to the sector buffer will not be written to the disk
until you issue a <S>ave command.

OED - 11

PRO-ESP - Enhanced System Package

While in the hexadecimal modify mode, an additional command is
available. Depress the <Z> key and DED will zero the remainder of the sector
buffer following the byte at the cursor position.

<A> ASCII modify

Depress the <A> key to enter the ASCII modify mode. To make changes to
the sector buffer, position the cursor over the byte to be changed using the
arrow keys, and type the new text. As the text is entered the cursor will
automatically advance to the next position in the sector buffer. The ASCII
modify mode can be exited at any time by depressing the <BREAK> key. Remember
that any changes made to the sector buffer will not be written to the disk
until you issue a <S>ave command.

While in the ASCII modify mode, the a cursor positioning command will
not function.

< S> Save sector

Depress the <S> key followed by <ENTER> to save the current sector to
the disk. Any modifications made in the sector buffer will not be written to
the disk until you <S>ave them.

Search Commands

<C> Find ASCII string

Depress the <C> key and OED will prompt for an ASCII string. The ASCII
search works exactly like the hexadecimal search described below.

<F> Find hexadecimal string

Depress the <F> key to search for a hex string. You will be prompted to
enter the hex string. After the string of hexadecimal digit pairs has been
entered OED will begin searching the disk for a match. The search will start
at the byte following the current location of the cursor. If your cursor is
positioned at relative byte X'40' on drive 1 cylinder X'00' sector X'00', the
search will start from drive 1, cylinder X'00', sector X'00', relative byte
X'41'. The search may be aborted at any time by depressing the <BREAK> key.
If a match is found, OED will display the sector where the match is found
with the cursor positioned to the first byte of the matching string. String
search is not affected by sector boundaries. If you wish to search for
an other occurrence of the same string use the G command.

<G> Goto next occurrence

Depress the <G> key to go to the next occurrence of the search string.

DED - 12

PRO-ESP - Enhanced System Package

Miscellaneous Commands

<D> Select drive

Depressing the <D> key followed by the <ENTER> key will cause OED to
prompt for a drive number. Enter the drive number you wish to scan or <BREAK>
to return to DOS Ready.

<X> Exit to DOS

Depress the <X> key followed by the <ENTER> key to return to DOS Ready.

<V> Verify sectors

Depress the <V> key and DED will prompt for a sector count. Enter a
decimal number less than or equal to 999. OED will then attempt to read that
many sectors to verify that they are indeed readable. A running count of the
unreadable sectors will be displayed. The verify command may be aborted at
any time by depressing the <BREAK> key. After the verification has been
completed OED will redisplay the original cylinder and sector.

<O> Output top-of-form

Depress the <O> key and OED will send a top-of-form (ASCH X'OC') to the
printer.

<L> List sector

Depress the <L> key followed by the <ENTER> key and OED will list the
contents of the current sector to the printer in the following format:

Drive 01 Cylinder 00 Sector 00
0123456789ABCOEF Byte 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
=-======-:========:==========~=========================~;==~===========
•• &! •••••••• &$ ••
•••• & !p.:
... a.Ad.I E
•• w •••• 0. 1 • •• $
................ w •• q •• r.
. s. : ... w. . . &# ••
•• K • # X • • -: •• w • > ·~
•• w.% ••••. :.# .. 2
.$! > .. 2 ... 2.
.# .. >. ! .. UJ.> .••
••••• > ••••• > ••••
.. . > $ •••. H
. w . .. ! ••........
.2 .. 6 .. 2

<OO>
<10>
<20>
<30>
<40>
<50>
<60>
<70>
<80>
<90>
<AO>
<BO>
<CO>
<DO>
<EO>
<FO>

00 lE 26 21 00 10 01 OF 03 CD BB 04 26 24 01 01
01 CD BB 04 26 14 04 OC CD BB 04 FD 21 70 14 3A
08 07 CB 6F 01 41 64 11 49 1D 20 05 CB A8 11 45
11 CB 77 20 OC CB BO CB 6F 11 27 OF 20 03 11 24
09 FD 7E 03 E6 03 BO FD 77 03 FD 71 04 FD 72 07
FD 73 08 3A 02 04 FD 77 09 5F 06 00 26 23 CD BF
04 ED 4B CC 23 78 E6 20 FD 86 04 FD 77 04 3E 22
81 FD 77 06 25 06 04 CD BF 04 3A 00 23 E6 10 32
OF 24 21 00 13 06 10 3E 10 90 32 EO 07 7E 32 El
07 23 10 F3 3E 04 21 00 15 55 50 F5 3E 09 Fl 01
00 04 CO 06 04 3E 06 CD 06 04 OB 3E 02 CD CE 04
11 00 OC 3E 01 CD CE 04 C3 00 24 lE 00 18 01 48
AF 57 FD E5 FO 21 D8 07 CD 03 00 FD El C9 05 El
13 32 DC 07 36 20 05 C5 32 DC 07 ED BO Cl 01 C9
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

DED - 13

PRO-ESP - Enhanced System Package

DOEDIT/FLT

The DOE0IT filter will allow the editing of video information and will
allow this edited information to be passed back through the *KI device.

Set *devspec [to] DOEDIT/FLT (parm, parm ••.)
Filter *KI [using] *devspec

NOCR=ddd

CURSOR=ddd

ACTIVE=ddd

Character to inform DOEDIT not to
send a Carriage Return after the
edited text.

Character to use as the cursor when
DOEDIT is active.

Keystroke to use as the edit
activation character.

abbr: ACTIVE=A, CURSOR=C, NOCR=N [Use DE for devspec]

Note that all parameters may be entered in decimal (ddd), hexadecimal
(X'nn'), or ASCII ("a") format.

Parameter Functions

NOCR=value

If this character is one position to the left of the cursor when <ENTER>
is depressed, NO carriage return (X'OD') will be sent through the *KI device.
This parameter defaults to 127 decimal (X'7F').

CURSOR:::value

This character will be displayed as the cursor while in edit mode. It
will not change your normal system cursor! This parameter defaults to 95
decimal (X'5F').

ACTIVE=value

Typing this keystroke will activate DOEDIT. This parameter defaults to
<CLEAR-SHIFT><E>.

DOEDIT Keystroke Functions

<Up Arrow>, <Down Arrow>, <Left Arrow>, and <Right Arrow>

While DOEDIT is active these keystrokes will move the cursor one position up,

DOEDIT /FLT - 14

PRO-ESP - Enhanced System Package

down, 1 e ft, or right, respective 1 y.

<SHIFT><Left Arrow>

This key will move the cursor to the beginning of the current line.

<SHIFT><Right Arrow>

This key will move the cursor to the first space following the last non-blank
character in the current line.

<BREAK>

This key will return control to the normal keyboard driver and passes NO
characters through the *KI device. The cursor is restored to its position
prior to activation of DO£DIT.

<CLEAR><Right Arrow>

This key will insert one space at the cursor location. All characters on the
line to the right of the cursor shift one position to the right.

<CLEAR><Left Arrow>

This key will delete the character under the cursor. All characters on the
line to the right of the cursor shift one position to the left.

<CLEAR><Space>

This key will redisplay the previously entered DOS command at the cursor
position, without executing it, thus allowing editing of the command line.

<ENTER>

This key will act differently depending upon the presence or absence of the
NOCR character, thus:

1) If the character immediately to the left of the cursor when <ENTER> is
depressed is NOT the same as the NOCR character, then all characters to the
left of the cursor on the current line will be sent through the *Kl device,
terminated with a carriage return (X'OD').

2) If the character immediately to the left of the cursor IS the NOCR
character, then all characters to the left of the cursor on the current line
(excluding the NOCR character itself) will be sent through the *Kl device.
The characters will NOT be terminated with a carriage return.

All other keystrokes in the range 32 through 127 (X'20'-X'7F') will
overtype the character under the cursor, and the cursor will move one
position to the right.

DOEDIT /FLT - 15

PRO-ESP - Enhanced System Package

FKEY/CMO

FKEY allows you to redefine the codes returned by the function keys.

FKEY (parm, parm, •••)

Fl=nn Redefine the Fl key.

SFl=nn Redefine the shifted Fl key.

F2=nn Redefine the F2 key.

SF2=nn Redefine the shifted F2 key.

F3=nn Redefine the F3 key.

SF3=nn Redefine the shifted F3 key.

DEFAULT Return keys to DOS defaults.

abbr: DEFAULT=D

FKEY will allow you to easily redefine your function keys. Specifying
the DEFAULT parameter will instruct FKEY to initialize the function keys to
their default values of:

Fl = X'81' / X'91'
F2 == X'82' / X'92'
F3 = X'83' / X'93'

The first number is the unshifted value, and the second number is the value
returned if the shift key is depressed along with the function key.

To give you an idea of how FKEY may be used, try the following:

1) Install DO EDIT using the default value for the ACTIVE parameter.
2) Type FKEY (Fl=X'E5')
3) Depress the Fl key and see that DOEDIT is now active!

NOTE: The changes made by FKEY will only remain until you reboot; they cannot
be SYSGENed.

FKEY - 16

PRO-ESP - Enhanced System Package

IOMON/CMD

IOMON/CMD is a disk drive "filter" which, when installed, will monitor
disk input/output for errors and allow you to take corrective action when
such occur.

IOMON (parm, parm)

ON

OFF

ENABLE

DISABLE

TABLE

Installs the I/0 monitor in high
memory and enables its operation.

Disables the 1/0 monitor's operation
and removes it from high memory if
possible.

Enables the 1/0 monitor if it has
been previously disabled.

Disables the l/0 monitor's operation
without removing it from high memory.

Displays the currently enabled disk
drivers in a tabular format.

Abbr: ON=YES or Y, OFF=NO or N, ENABLE=EN or E,
DISABLE=DIS or D, TABLE=TAB or T.

Defaults: ON and TABLE.

The I/O monitor is installed with the simple command:

IOMON (ON)

IOMOf\J will "filter" all currently enabled disk drives with its own error
trapping routine. Any disabled disk drives will remain unfiltered so that
they may be enabled at a later time, if needed, without the interference of
the monitor. The monitor can be temporarily disabled, without removing it
from high memory, by the command:

IOMON (DISABLE)

IOMON - 17

PRO-ESP - Enhanced System Package

At this time, any new drivers or drive "filters" may be installed into the
system. To reenable the monitor, execute the command:

IOMON (ENABLE)

The command:

IOMON (OFF)

will permanently remove the monitor from the system; its high memory
allocation will be released if possible.

r~emember, at most one of the four major monitor parameters (ON, OFF,
ENABLE, or DISABLE) may be specified in the same command line; any
combination of two or more is an error and will cause the monitor
installation program to abort. The TABLE parameter may be entered along with
any one of the other four.

The TABLE parameter may be used to obtain a display of all currently
active disk I/0 drivers without affecting the current status of the monitor.
Any use of the parameters OFF, ON, ENABLE, and DISABLE will also display the
driver table. A typical table follows:

Drive 0 => IOMON, X1 F389 1 => $ADH, X'F57E 1

Drive 1 => IOMON, X1 F389 1 => $FD, X1 lOAl 1

Drive 2 => IOMON, X1 F3B9 1 ==> $FD, X1 lOAl 1

Drive 3 => IOMON, X1 F3B9 1 => $FD, XI lOAl I
Drive 4 => IOMON, X'F3B9' => $FD, X1 lOAl 1

Drive 5 :;::) Inactive
Drive 6 => Inactive
Drive 7 => Inactive

This table, for each drive, indicates whether the monitor is active and where
in high memory the monitor resides, plus the next driver in the chain and
where it resides. The system floppy disk driver is indicated by the module
name "$FD". Any inactive drive is shown as such.

w h e n a t r a p p e d d i s k I / 0 e r r o r o c c u r s , a n d t h e m o n it o r is a c ti v e , th e
following will be displayed:

Disk I/0 error X'nn': <message>
Function X'nn', Drive n, Cylinder X'nn', Sector X'nn', Buffer X'nnnn'
<R>etry, <C>ontinue, <I>gnore, <A>bort?

As shown, the error code, driver function, drive number, cylinder number,
sector number, and buffer address will be displayed, along with a short
explanatory message. A list of the driver function codes is available for
reference in one of two publications: "The Programmers Guide to LDOS/TRSDOS
Version 6 11 from MISOSYS, page 3-46; or the "TRS-80 Model 4 Technical
Reference Manual", from Radio Shack, page 195. The following errors are
trapped:

IOMON - 18

Code

X10l 1

X102 1

X103 1

X1 04 1

X105 1

x•og•
X1 0A 1

X1 0B 1

x•oc•
X 1 0D 1

X1 0E 1

X1 0F 1

PRO-ESP - Enhanced System Package

Short Message

Read Hdr - CRC
Read - Seek
Read - LD
Read - CRC
Read - RNF
Write Hdr - CRC
Write - Seek
Write - LO
Write - CRC
Write - RNF
Write - Flt
Write - WP

Explanation

Par,ty error during header read
Seek error during read
Lost data during read
Parity error during read
Data record not found during read
Parity error during header write
Seek error during write
Lost data during write
Parity error during write
Data record not found during write
Write fault on disk drive
Write protected disk

At this point you must choose one of the four options listed in the third
line of the error display. Simply type the first letter of the desired action
to be taken, either "R", "C", 11111 , or 11 A 11 • Lowercase is accepted.

The <R>etry option will issue the 1/0 command to the disk driver again
in the hope that a retry will be successful. Note that the driver has already
attempted the 1/0 operation several times without success (the exact number
of automatic retries is defined by the system variable RFLAG$). Manual
retries with the <R> option are most effective for recovery from parity, lost
data, and record not found errors, especially when you are executing a BACKUP
or COPY operation.

The <C>ontinue option will exit the 1/0 monitor, passing the error code
unchanged back to the calling program. Many system programs, such as the
FORMAT utility, normally expect to see certain kinds of disk 1/0 errors, and
contain routines which will handle the errors automatically. Use the <C>
option in these cases.

The <l>gnore option will exit the I/0 monitor and return to the calling
program as if no error ever occurred. Note that use of this option will
prevent the calling program from detecting the error; and that the 1/0 buffer
will probably contain invalid data. The <I> option should only be used when
repeated <R>etries have been unsuccessful, and you wish the executing program
to continue operation without aborting (for instance, you may wish to
continue a BACKLJP by class when an error occurs while copying one of the
files being backed up).

Finally, the <A>bort option will immediately return to DOS Ready through
the system abort routine. This will cancel any executing JCL.

IOMON - 19

PRO-ESP - Enhanced System Package

MINIDOS/FL T

The IV1INIDOS filter allows you to access some DOS commands without the
necessity of being at the DOS Ready level.

Set *devspec [to] MINIDOS/FLT
Filter *KI [using] *devspec

There are no parameters. [You may use MD for devspec]

After the MINIDOS filter has been installed, simultaneously depress the
<CLEAR> key, the <SHIFT> key and one of the following action keys: <C>, <D>,
<F>, <K>, <P>, <Q>, <R>, or <T>.

<C> - The C command will toggle the state of the clock display. This is the
same as using the Tiiv1E (CLOCK=ON) or TIME (CLOCK=OFF) library commands.

<D> - The D command will cause the system to load and execute the system
debugger. You may return to the executing program by depressing G<ENTER>.

<F> - The F command will allow you to display the free space remaining on a
diskette, in decimal Kilobytes. At the prompt {f}, type in the number of the
drive whose free space you wish to view and depress <ENTER>.

<K> - The K command will allow you to remove a file from a disk. At the
prompt {k}, enter the name of the file you wish to remove and depress
<ENTEt~>. If an error occurs the appropriate error message will be displayed.

<P> - The P command will allow you to send a byte to the printer device
(*PR). At the prompt {p}, enter the DECIMAL. value of the byte you wish to
send to the printer, and depress <ENTER>.

<Q> - The Q com{T)and will allow you to display the directory of a diskette.
At the prompt {q}, enter the number of the drive whose directory you wish to
view. You may limit the display by suffixing the drive number with a slash
(/) followed by an up to three character file extension. Depress <ENTER> to
finish your input.

<R> - The R. command will allow you to rename a file. At the first prompt {r},
enter the current name of the file you wish to rename. At the second prompt
{R}, enter the new filename.

< T> - The T command will send a Top-of-Form character (ASCII X'0C') to the
printer device. If your printer is not capable of executing a hardware
formfeed you will have to install the FORMS filter, too.

Note that any MINIDOS function which generates a prompt may be aborted by
striking the <BREAK> key.

MINIDOS/FL T - 20

PRO-ESP - Enhanced System Package

NAME/CMD

The NAME utility allows you to change the name and/or date of a
diskette.

NAME :d (parm, parm)

:d Indicates the drive containing the
diskette to be changed.

NAME= 11new name" Changes the specified diskette•s
name to 11 new name 11 •

OATE= 11rrm/dd/yy 11 Changes the specified diskette•s
date to 11 mm/dd/yy 11 •

OATE=ON/YES/Y Changes the specified diskette's
date to the current system date.

abbr: NAME=N, DATE=D. There are no defaults.

To change the name of a diskette, use the NAME parameter. Any printable
ASCII characters (32-127) are acceptable. The name may be one to eight
characters long; it will be padded with spaces to the right to make a field
that is eight characters in length. To change the date of a diskette, use the
DA TE="mm/dd/yy" parameter. Slashes must be used to delimit the month, day,
and year fields. Alternatively, the DA TE=ON parameter may be used to place
the current system date onto the diskette.

An invalid drive, name, or date specification will be flagged
appropriately, and NAME will abort. If no parameters are entered, NAfv1E will
ab art with the message, Nothing done!

NAME - 21

PRO-ESP - Enhanced System Package

PRTOGGLE/CMO

PR TOGGLE allows you to dynamically link the video device to the printer
device with a single keystroke.

PRTOGGLE/CMD (parna)

ACTIVE=ddd

abbr: ACTIVE=A

Set activation keystroke.
Defaults to <CLEAR-SHIFT><L>.

The ACTIVE parameter is used to set the activation keystroke for
PR TOGGLE. This keystroke may be entered in decimal (ddd), hexadecimal
(X'nn'), or ASCII ("a") format.

The PR TOGGLE filter will monitor the keyboard (*Kl) device for
depression of the activation keystroke. Upon receipt of the activation
keystroke, subsequent information directed to the video (*DO) device will
also be copied to the printer (*PR) device. This "link" will remain active
until the activation keystroke is again depressed.

PR TOGGLE can only be applied at DOS Ready. Also, it creates the phantom
devices *PK and *PD to implement its filters on the *KI and *DO devices,
respectively. If either of these phantom devices is already active in the
system, PRTOGGLE will not install itself, displaying an error message and
returning to DOS Ready. Finally, PR TOGGLE will abort its installation process
if no device space is available in the system (i.e. two free device control
blocks are required); an appropriate message will be displayed.

PRTOGGLE - 22

PRO-ESP - Enhanced System Package

RO40/CMO

RD40/CMD is a disk drive "filter" which, when installed, will allow the
reading of a 40-cylinder diskette in an BO-cylinder drive.

RD40 :d {parm)

:d

ON

OFF

ENABLE

DISABLE

Specifies the number of the 80
cylinder drive which will be used
to read the 40 cylinder diskettes.

Installs the RD40 filter in high
memory and enables its operation.

Disables the RD40 filter's operation
and removes it from high memory
if possible.

Enables the RD40 filter if it has
been previously disabled.

Disables the RD40 filter's operation
without removing it from high memory.

Abbr: ON=YES or Y, OFF=NO or N, ENABLE=EN or E,
DISABLE=DIS or D.

Defaults: ON.

The RD40 filter is installed with the simple command:

RD40 :d (ON)

RD40 will "filter" the BO-cylinder drive specified by 11 :d", allowing
read-only ace ess to 40-c y lind er diskettes in th at drive. The drive must be
enabled in the system. The RD40 filter can be temporarily disabled, without
removing it from high memory, by the command:

RD40 :d (DISABLE)

At this time, SO-cylinder diskettes may again be read from and/or written to
in the specified drive. To re-enable the RD40 filter for 40-cylinder
accesses, invoke the command:

RD40 :d (ENABLE)

The command:

RO40 :d (OFF)

RD40 - 2J

PRO-ESP - Enhanced System Package

will permanently remove the RD40 filter from the system; its high memory
allocation will be released if possible.

Remember, at most one of the four RD40 filter parameters may be
specified in the same command line; any combination of two or more is an
error and will cause the RD40 filter installation program to abort.

RO40 may be installed independently on more than one drive; each time a
new high memory allocation will be made. The module name will be different
for each drive; installation on drive 3, for instance, would generate the
module name "RD403". Also, every time RD40 is invoked for a particular drive,
with any one of the four permissible parameters, the drive will be restored
to cylinder O in preparation for further disk accesses to that drive. It is
recommended that any newly mounted diskette in the RD40-filtered drive be
logged in with either the DE VICE or LOG command before any I/0 is attempted.
Finally, the disk I/O monitor (IOMON/CMD) must be applied after the RD40
filter is established to prevent any spurious errors from being trapped
during access of a 40-cylinder diskette.

RD40 - 24

PRO-ESP - Enhanced System Package

UNREMOVE/CMD

The UNREMOVE utility allows you to recover a file which was
inadvertantly removed from a disk.

UNREMOVE filename/ext:d

filename/ext:d - The complete specification of the
file you want to restore.

By using UNRt:MOVE you will be able to recover the file, provided that
you haven't already reused the disk space in so me other file(s).

If more than one removed file is found on the specified disk with the
specified name, then all of the matching filenames along with their creation
dates will be displayed. Select which file you wish to unremove by depressing
the number next to the file with the desired creation date.

If an error occurs during the execution of UNREMOVE, one of the
following errors will be displayed:

Missing drive number! - A filename is entered which does not contain a
drive number

Can't restore file. Granule(s) ALREADY allocated! - UNREMOVE determined
that some of the disk space for the file has already been reused.

Can't restore file. Attempt to allocate beyond end of disk! - UNREMOVE
determined that a granule requested in the directory entry does not exist on
the disk. This could occur if the directory entry has been damaged. If this
is th e c as e , th e di r e c t o r y en try mu st b e c o rr e c t e d b e fore UN R E MO V E c an
properly restore the file. Information in the "Programmer's Guide", section
4, should help you in use of the OED disk editor utility if you attempt to
fix the problem.

File NOT found! - The filename cannot be found on the disk. This could
occur if you have specified the wrong disk or if the directory slot has
already be en reused by another file.

File ALREADY exists! - The filename is already on the disk as an active
file. If you wish to restore the original file, first rename the active file
and use UNREMOVE again.

UNREMOVE - 25

PRO-ESP - Enhanced System Package

XONXOFF /FLT

The XONXOFF filter implements the standard XON-XOFF handshaking protocol
for those serial devices which require it.

Set *devspecl [to] XONXOFF/FLT
Set *devspec2 [to] COM/DVR
Filter *devspec2 [using] *devspecl

There are no parameters.

This filter is designed to allow the attachment of serial output devices
(such as printers, terminals, or plotters) which require your host computer
to honor the XON-XOFF flow control protocol. These devices will send an XOFF
(Control-5 or X'l3') to the host when they can no longer accept incoming
data, and will signal the host to resume transmission with an XON (Control-Q
or X' 11 '). The XONXOF F /FLT can be applied to the communications line device
in order to support this handshaking requirement. The filter will operate
correctly regardless of baud rate, parity, or word size.

XONOFF /FLT - 26

MACH2 - File Space Allocation Utility

Copyright 1983 by Karl A. Hessinger - MicroConsultants, All rights reserved
Published by MISOSYS, Alexandria, Virginia

TABLE OF CONTENTS

General Information ••••••

Distribution Diskette ••

. • . . • • 2

• • • • 2

Invoking MAPPER • • • 3

Invoking ALLOC ••• . . 5

Invoking CALC •• . • 7

Invoking HANDY • • • • • • 8

Space Optimization Procedures ••••••

Glossary •••••

Note: LOOS is a trademark of Logical Systems Incorporated
TRSDOS is a trademark of Tandy Corp.

MACH2 Utility
- 1 -

10

14

MACH2 - File Space Allocation Utility

GENERAL INFORMATION

The LOOS file system allocates space for your files in one of two ways.
It either assigns space randomly [as used in LOOS 5.0.x, 5.1.0, 5.1.1, 5.1.2,
5.1.3, 6.0) or assigns space automatically starting from cylinder one [5.1.4,
6.1]. Since the access of disk files requires a disk drive to step from track
to track [which is one of the slowest operations of a disk drive excluding
turn-on delay], the most efficient placement of files is one that minimizes
this stepping operation. Either method may prove inefficient in particular
cases since the optimimum arrangement is dependent on the specific function
and access sequence of all files on the disk.

Once and for all, MISOSYS now puts you in the driver seat when it comes
to DOS allocation of disk space. Whether you are a commercial programmer
wanting to construct ••optimized" master diskettes for distribution purposes,
whether you are a sophisticated hacker wanting to squeeze every bit of
performance out of your system, or whether you just want to create the most
contiguous files where you want them, MACH2 is for you.

MACH2 is a collection of four utilities that were designed to work
together with such ease, that you will be amazed at how easy direct control
of space allocation can be. The MACH2 utilities are friendly. The MACH2
utilities are flexible. Finally, the MACH2 utilities are powerful. You are
not limited to floppies, MACH2 works just as well with hard drive systems.

We know that you have been asking for better control
allocation for a long time. We know that you have needed MACH2
time. We know that you do not want more stringent DOS control
placement. Now you can take control! MISOSYS delivers with MACH2!

DISTRIBUTION DISKETTE

over space
for a long
over file

This documentation covers the operation of both the Model I/III LOOS 5.1
version (MACH2) and the LOOS or TRSDOS 6.x compatible version (PRO-MACH2).
The MACH2 package is provided on a 35-track single density data diskette for
LOOS Version 5.1. The PRO-MACH2 package is provided on a 40-track single
density data diskette for LDOS/TRSDOS Version 6.

MACH2 Utility
- 2 -

MACH2 - File Space Allocation Utility

MAPPER
=======

The operating system 1 s directory command (DIR) will let you know what
files you have on a disk, but MAPPER will show you where the files are
positioned on that disk. It is invoked v·ia the syntax:

MAPPER :d (BLANK,PRINT)

:d

BLANK

PRINT

- Specifies which drive to map.

- Used to generate an allocation worksheet.

- Sends output to the printer device.

Abbreviations: B=BLANK, P=PRINT

------- --------------------- -------------- ------- -- -- -
The MAPPER provides a diskette map by granule by file. You can use the

MAPPER just to get a look at what files occupy each granule of disk space.
This information is great for other uses [such as reconstruction of damaged
cylinders]. Use the MAPPER with the BLANK parameter option on a freshly
formatted disk [or other such disk with available free space] to obtain a
worksheet for manually preparing your optimum arrangement of files.

If you do not enter a drive number on the command 1 'ine, MAPPER wi 11
prompt you to enter the drive number via the prompt:

Drive?.

The BLANK parameter will cause the free granules on the disk to be
displayed as a bracketed blank field, u[] 11 (without the quotes)
instead of the normal field entry of "** Empty ·u 11 • This can be used to
generate a worksheet for use in creating an optinrized disk by ALLOC.

While the map is being displayed on the video screen, the following keys
will allow you to scroll through the map:

Key Code

<UP ARRO~J>
<DOWN ARROW>
<X> or <BREAK>

Key Function

Display previous screen page
Display next screen page
Exit to DOS

The PRINT parameter option will cause the disk map to be sent to the
printer instead of the video display.

MAPPER Utility
- 3 -

MACH2 - File Space Allocation Utility

MAPPER produces a screen or printer listing similar to the following
illustration [some lines have been deleted to abbreviate the listing]:

Diskname : TESTDISK
Sides : 1 Density: Double

0 BOOT/SYS M80/CMD
1 M80/CMD M80/CMD
2 M80/CMD M80/CMD
3 TEST/CMD TEST/CMD

19 **Empty** **Empty**
20 DIR/SYS DIR/SYS
24 **Empty** **Empty**
25 **Locked** ** Locked **
26 **Empty** **Empty**
27 M80PACK/CMD M80PACK/CMD
28 M80PACK/CMD M80PACK/CMD
37 **Empty** **Empty**
38 M80/CMD M80/CMD

Free Space: l08K
Cylinders : 40

M80/CMD
M80/CMD
TEST/CMD
TEST/CMD
Empty
DIR/SYS
Empty
Locked
Empty
M80PACK/CMD
M80PACK/CMD
Empty
M80/CMD

The "file specification field" will contain the string"** error**" if the
associated granule is allocated without a file referencing the granule. In
addition, if two or more files are assigned to the same granule, that error
will be indicated by appending the string"<---" to the file specification.

If you use the BLANK parameter option on a freshly formatted disk with
no additional files present, the worksheet generated will look like this
[some lines have been deleted to abbreviate the listing]:

Diskname: TESTDISK Free Space : 174K
Sides : 1 Density : Double Cylinders : 40

--
0 BOOT/SYS
1 []
2 []
3 []
4 []
5 []

20 DIR/SYS
21 []
22 []
23 []

37 []
38 []
39 []

[]
[]
[]
[]
[]
[]

DIR/SYS
[]
[]
[]

[]
[]
[]

MAPPER Utility
- 4 -

[]
[]
[]
[]
[]
[]

DIR/SYS
[]
[]
[]

[]
[]
[]

MACH2 - File Space Allocation Utility

ALLOC

Pick your media and use your MAPPER-generated worksheet to develop your
customized layout of files - or plunge right in to ALLOC since it gives you a
dynamic free-space map on-line! ALLOC will a.llow you to place a file at any
location on a disk that you choose. It is invoked simply by entering:

-- -------------
ALLOC

There are no parameters.

========:======================--======-========= ~== ====:

The allocation tool, ALLOC, lets you tell the DOS where you want a file
placed in up to four directory extents. ALLOC's screen display conveniently
presents the controls. Al1 you need do to start process is specify the
file specification. ALLOC even provides an option to specify the file as
being "created 11 , thus inhibiting the DOS from deal'locating file space.

You will be prompted for the name of the file you wish to locate via
the prompt:

Filename ?

The file specification must include a drive number. Once you identify the
file specification, ALLOC gives you a three-line scrolling free-space map so
that you can see what granules have already been allocated on the disk in
question. The free space map will be displayed to help you plan where the
file or files can be located. Look at the useful ALLOC screen display as it
prompts for the granule count during a file allocation procedure:

ALLOC - LOOS File Space Allocator

6- 11 xx.
12- 17
18- 23

Extent
-----_______ ,..,..

l

XXX

Allocating file TEST/OAT:3

Starting
Cyl ·inder

12

Starting
Granule

0

The three-1 ine fn:.ie space map may be scro1 l
<UP-ARROW> or <DOWN-ARROW> keys as an entry to any

XXX X. •

Granule
Count

in-place by using the
t II prompt.

For each of the four possible extents, will be prompted for the
starting cylinder, the starting gram(le) and the granu1e count. Each prompt

ALLOC Utility
- 5 ..

MACH2 - File Space Allocation Utility

is identified to you via the position of the cursor. Cylinders and granules
are both numbered starting from zero. Thus for example, a three granule per
cylinder diskette (5-1/4 11 double density) has granules numbered 0, 1, and 2.
A 40-cylinder diskette has cylinders numbered from O through 39. Depressing
<BREAK> or <ENTER> to the starting cylinder prompt will instruct ALLOC that
you have entered all of the extents. Depressing <BREAK> from either of the
two remaining prompts will cause ALLOC to restart the entry of that
particular extent.

When information for all of the extents has been entered, you will be
provided an opportunity to commence the physical allocation or retreat via
the prompt:

OK to allocate/create this file (Y/N/C)?.

The response to this query also establishes whether or not the file's CREATE
bit will be set. If you depress <N>, ALLOC will abort the physical allocation
thereby providing you with an 11 escape 11 mechanism in case of an entry error.
If the allocation is aborted, the filename will be removed from the target
disk's directory. Depress <Y>, and ALLOC will physically allocate the file.
If you specify <C>, the file will be allocated and the 11 CREATE 11 bit will be
set in the file's directory entry. The 11 create 11 bit is used by the DOS to
ensure that the space will not be deallocated. It's primary utility is for
the pre-allocation of space for random access files similar to the DOS CREATE
library command; however, ALLOC obtains this space using the least number of
extents based on your own analysis [if you want this selection performed
automatically, use HANDY]. Thus, ALLOC 1 s procedure generates a file that is
optimum for access speed.

ALLOC can allocate space for a file that already exists in the
directory; however, ALLOC is incapable of allocating space to an existing
file which has a non-zero file length [i.e. you can ALLOC space to an
existing null length file but not one that already has an allocation of
space].

ALLOC Ut i 1 ity
- 6 -

MACH2 - File Space Allocation Utility

CALC

The CALC utility can process a disk's directory to let you know exactly
how many granules each file would take up on most media formats supported by
the DOS. This tool is great for taking a disk full of programs that are on
one media type and ascertaining the granule requirements for a different
media type. CALC is invoked via the syntax:

--
CALC :d {PRINT)

:d - Specifies which drive to calculate.

PRINT - Sends output to the printer device.

Abbreviations: P=PRINT

I
I
I
I
I
I
I
I
I --

If a drive number is not entered on the command line, you will be
prompted to enter the drive number via the prompt:

Drive?.

CALC will display a listing of all files on the disk along with the
number of granules that would be required for that file on various media
types. The listing will be normally directed to the video screen but can be
redirected to the printer device via the parameter, PRINT.

As easy as CALC :1 (P), you can obtain a listing similar to the
following printout:

511 511 8" 8" ==== Hard Disk ====
Filename single double single double 4 SPG 16 SPG 32 SPG

------------ ------ ------ ------ ------ ------ ------ ====== ------------ ------ ------ ------ ------ ------ ------
BOOT/SYS 1 1 1 1 2 1 1
DIR/SYS 4 3 3 2 5 2 1
M80/CMD 15 13 10 8 19 5 3
M80PACK/CMD 15 12 9 8 18 5 3
TEST/CIM 5 4 3 3 6 2 1
TEST /CMD 16 12 9 8 18 5 3
TEST/DAT 0 0 ·o 0 0 0 0

The first two columns relate to 5-1/4 inch single arid double density media
indicating five and six Sectors Per Granule (SPG) respectively. The third and
fourth columns reference the granule requirements on eight-inch single and
double density media indicating eight and ten SPG respectively. The final
three columns are provided for use with hard disk allocation schemes using
four, sixteen, or thirty-two SPG respectively.

CALC Ut 1 li ty
- 7 -

MACH2 - File Space Allocation Utility

HANDY
=====

Want to just get a large block of contiguous space for that data base?
HANDY is just handy for those non-critical allocation jobs. HANDY will easily
allocate the most contiguous extent of space in up to four extents - the
number of extents is controlled by you! HANDY determines where the file will
fit on the disk according to your extent specification. It is easily invoked
via the command specification:

===-

HANDY filespec (SIZE=dd,CREATE)

filespec - is the name of the file that you want to
allocate space for. The entry is~optional.
If omitted, you will be prompted for the
name of the file(s).

SIZE=dd - is the amount of space (in K) that you
want to allocate for the file identified.

CREATE - is specified if you want the directory
entry for "filespec" of "SIZE=dd" to have
it's "CREATE" bit set (see text).

Abbreviations: S=SIZE,C=CREATE

===-

HANDY operates in two modes. To streamline the allocation of a single
file with HANDY, you can enter the file specification and the SIZE parameter
directly on the command line. The "CREATE" parameter is used to specify the
nature of such a file. If the full command-line entry of information is
performed, HANDY will automatically allocate the file space and exit without
pausing for any prompts. Alternatively, if the file specification is omitted,
HANDY will not accept any parameters from the command line. This method of
usuage results in going through the menu prompts that will be presented.

After the the program is loaded, if you have not entered the file
specification on the command line, you will be prompted with:

Filename? •••••••••••••.

Be sure that the file specification has a drive number. File space is
requested in units of "K" (1024 characters). After the filespec has been
entered, you will be prompted to enter the total space to be allocated for
the file. This query is:

Size of file {in K)? •••

HANDY has the ability to restrict the automatic allocation from using
specified cylinders. We wi 11 use the term "lock". This does not mean that
HANDY will permanently restrict such allocation - it will invoke the
restriction only for the allocation of the file identified by you. This

HANDY Utility
- 8 -

MACH2 - File Space Allocation Utility

feature can be useful if you wish HANDY not to use certain portions of the
disk - such as the last 10 cylinders, or the first 5 cylinders. You specify
the cylinder ranges to lock in response to the prompts:

Lock cylinders
through

.
You may enter as many cylinder ranges as you wish. When you complete an
entry, you will be reprompted for an additional range. When you have
finished, simply depress <ENTER> at the "Lock cylinders :" prompt.

HANDY calculates the fewest number of extents for the given file size
and the target disk, and displays the results. The menu at this point would
look something like the following illustration:

Extent
======

1

HANDY - LOOS File Space Allocator

Filename? yourfile/dat:3
Size of file (in K) ? 12

Lock cylinders

Starting
Cylinder
===========

21

through

Starting
Granule
==::;:=:=:===

0

OK to allocate/create this file (Y/N/C) ?

When information for all
provided an opportunity to

of the extents has been displayed,
commence the physical allocation or

the prompt:

OK to allocate/create this file (Y/N/C)?.

Granule
Count

8

you will be
retreat via

The response to this query also establishes whether or not the "CREATE" bit
will be set. If you depress <N>, HANDY will abort the physical allocation
thereby providing you with an "escape" mechanism. If the allocation is
aborted, the filename will be removed from the target disk's directory.
Depress <Y>, and HANDY will physically allocate the file. If you specify <C>,
the file will be allocated and the "CREATE" bit will be set in the file's
directory entry. The "create" bit is used by the DOS to ensure that the space
will not be deallocated. It's primary utility is for the pre-allocation of
space for random access files; however, HANDY obtains this space using the
least number of extents.

HANDY cannot allocate space to an existing file which has a non-zero
length or which would require more than four extents.

HANDY Utility
- 9 -

MACH2 - File Space Allocation Utility

Creating an Optimized Disk
==========================

Before we discuss a step-by-step method that can be used to construct an
optimized disk, it is necessary for you to understand some of the actions
that the operating system performs when accessing any given file. First, file
access consists generally of up to three parts: the opening of a file,
passing data from/to the file (input/output), and closing the file. Depending
on the size of the file, it takes up space on one or more cylinders. During
the process of opening or closing a file, the DOS must read the disk's
directory. The disk's directory is usually kept on a cylinder at the midpoint
of the disk (i.e. a 40-cylinder disk has its directory at cylinder 20).

A disk takes a specified period of time to step from track to track.
This may vary on 5-1/4" drives, for example, from 6 milliseconds per track
(fastest drive) to up to 40 milliseconds per track (slowest drive).
Therefore, the distance in tracks of a file from the directory dictates the
minimum amount of disk time required before the first file record can be
accessed. If the file is 15 tracks away from the directory on a 20ms step
rate drive, this adds up to 300 milliseconds.

The space occupied by a file may not exist in a single connected chunk
[we actually call this chunk of space an extent]. The size of an extent will
vary according to what granules are available when the file is allocated
[HANDY will always allocate the space to achieve a maximum number of granules
per extent]. An extent cannot exceed 32 granules. Therefore, the number of
extents taken up by a file depends on both the size of the file and the
"spottedness" of the available free space. When a file is opened, the DOS
maintains a file control block (FCB) which contains information on accessing
the file's disk records. This FCB can hold the data on up to four extents.
Therefore, once a file has more than four extents, the DOS will have to
re-examine the file's directory to obtain the data on an extent not found in
the FCB. Since the new extent data replaces one of the old, a randomly
accessed file with a great number of extents incurs an excessive overhead of
directory access which implies greater disk drive head thrashing.

This discussion presents two observations. First, files that are
frequently accessed should be placed close to the directory. Second, files
that are randomly accessed should be contained in as few extents as possible.
With these points in mind, let's illustrate a few steps to be taken in order
to construct a diskette for optimum access. In this case, we are going to
refer to a "frequently accessed" situation - such as a DOS system disk. The
following steps may provide a simple way to create just such an optimized
diskette.

1. Select the freshly formatted destination disk and invoke
MAPPER with both the BLANK and the PRINT options. This will
produce a worksheet that you can use to manually construct
the disk layout.

2. Invoke CALC referencing the source disk to calculate the
number of granules that each file will require.

3. Make your space selections by writing the names of the
files onto the worksheet. Remember that placing the most

Optimization Techniques
- 10 -

MACH2 - File Space Allocation Utility

frequently used files closest to the directory should yield
the highest performance. This means you have to be aware of
the frequency of usage of each file.

4. Using ALLOC, place the files on the disk according to the
map you have just manually worked up.

5. Use BACKUP or COPY to transfer the actual files from the
SOURCE disk to the allocated DESTINATION disk.

Let's examine a specific example. You want to develop an optimized
5-1/4" BO-track double density system disk with two sides. Your source is a
40-track double density 5-1/4 11 single sided diskette. For this operation, you
will not need CALC. Want you want to do is to obtain the existing map of the
source (under the assumption that you have been supplied an optimum system
disk). Using MAPPER on the source, you will obtain a printout similar to the
following [some lines have been deleted to abbreviate the listing]:

Diskname : LDOS-514 Free Space : 62K
Sides : 1 Density: Double Cylinders : 40
--

0 BOOT/SYS QFB/CMD QFB/CMO
1 QFB/CMD FED/CMD FED/CMO
2 FEO/CMD FED/CMD FEO/CMD
3 ** Empty ** ** Empty ** ** Empty **

7 ** Empty ** ** Empty ** ** Empty **
8 LOG/CMD Jl/DVR CONV /GMO
9 MOD3/DCT REPAIR/CMD CMOFILE/CMD

10 CMDFILE/CMD KI/DVR FORMAT/GMO
11 FORMAT/GMO FORMAT/CMD FORMAT/CMD
12 BACKUP /CMD BACKUP/GMO BACKUP /CMD
13 BACKUP /CMD LBASIC/OVl LBASIC/OV2
14 L BAS I C/OV 2 LBASIC/OV3 LBASIC/CMO
15 LBASIC/CMD LBASIC/CMD LBASIC/CMD
16 SYSO/SYS SYSO/SYS SYSO/SYS
17 SYS7/SYS SYS7/SYS SYS7/SYS
18 SYS 7 /SYS SYS7/SYS SYS7/SYS
19 SYS7/SYS SYS2/SYS SYS3/SYS
20 DIR/SYS DIR/SYS DIR/SYS
21 SYS8/SYS SYSl/SYS SYSlO/SYS
22 SYSll/SYS SYS12/SYS SYS6/SYS
23 SYS6/SYS SYS6/SYS SYS6/SYS
24 SYS6/SYS SYS6/SYS SYS6/SYS
25 SYS6/SYS SYS6/SYS SYS4/SYS
26 SYS5/SYS SYS9/SYS BASIC/CMD
27 PATCH/CMD PATCH/CMD PR/FLT
28 MIN 100S/FLT KSM/FLT LCOMM/CMO
29 LCOMM/CMD RS232T/DVR HITAPE/CMO
30 EQUATE3/EQU EQUATE3/EQU EQUATE3/EQU
31 COPY23B/BAS ** Empty ** ** Empty **
32 ** Empty ** ** Empty ** ** Empty **

39 ** Empty ** ** Empty ** ** Empty **

Optimization Techniques
- 11 -

MACH2 - File Space Allocation Utility

The next step is to invoke MAPPER on the freshly formatted destination disk
using the PRINT and BLANK parameters. This will generate a worksheet that
looks something like the following [some 1 ines have been deleted to
abbreviate the listing while others have been filled in based on the next
step that you will undertake]:

Diskname : FLOP Free Space : 707K
Sides : 2 Density: Double Cylinders : 80

0 BOOT/SYS
[----->]

1 [fed/cmd]
[----->]

2 [J
[]

32 [J
[]

33 []
[]

34 [J
[J

35 [J
[]

36 []
[]

37 [J
[----->]

38 [----->]
[----->]

39 [----->]
[sys2/sys]

40 DIR/SYS
DIR/SYS

41 [sys8/sys J
[sysl2/sys]

42 [----->]
[-----> J

43 [-----> J
[sys9/sys J

44 [patch/cmd]
[]

45 [J
[J

46 []
[]

47 []
[]

78 []
[J

79 []
[]

BOOT/SYS BOOT/SYS
[-----> J
[-----> J [-----> J
[]
(] []
[]

(J []
[J
[J []
[J
[] []
[]
[J [J
[]
[] []
(]
[] [lbas i c/cmd]
[-----> J
[----->] [----->]
[----->]
[----->] [-----> J
[sys3/sys J
DIR/SYS DIR/SYS
DIR/SYS
[sysl/sys J [syslO/sys]
[sys6/sys J
[----->] [-----> J
[-----> J
[----->] [sys4/sys]
[basic/cmd]
[----->] [pr/flt]
[]
[] [J
[J
[] [J
[]
[] []
[J

[] []
[]
[] []
[]

Optimization Techniques
- 12 -

[qfb/cmd J

[----->]

[]

[]

[]

[]

[J

[]

[----->]

[sys7/sys]

[-----> J

DIR/SYS

[sysll/sys]

[-----> J

[sys5/sys J

[]

[]

[J

[]

[]

[]

MACH2 - File Space Allocation Utility

The next step is to transfer the file names from the source map to the
destination worksheet, working out from either side of the directory. The
sample worksheet has already been filled with some of the file names. Since
both the source and destination diskettes have the same number of sectors per
granule, CALC was not needed to calculate the granule requirements. You would
have needed CALC 1 s information if the source and destination used a different
number of sectors per granule - say one being a single density 5-1/4"
diskette and the other being a double density 5-1/4" diskette.

Once the worksheet is completed, the information is keyed into ALLOC so
that the space for each file is allocated. The series of entries will be
something like the following:

user entry description of entry

invoke ALLOC alloc
sys8/sys:2
41
0
1
<ENTER>
<Y>
sysl/sys: 2
41
1
1
<ENTER>
<Y>
sys6/sys:2
41
5
9
<ENTER>
<Y>
(continue

enter the file specification
starting cyliner = 41
starting granule= 0
the file uses one granule
response to second extent
OK to allocate
the next file specification
starting cylinder= 41
starting granule is 1
also one granule used
response to second extent
OK to allocate
let's skip to this file
starting cylinder is 41
starting granule= 5
sys6/sys used 9 granules

with data for remaining files)

Model I/III users may prepare a 11 key 11 file containing all
and use the redirection capabilities of ZSHELL to redirect
to use the prepared key file.

required entries
the keyboard input

Up to this point, all of the files have been allocated space on the
destination diskette. You now have to transfer the contents of the existing
files from the source diskette to the destination diskette. Use BACKUP to
accomplish this procedure. This completes the allocation and generation of
the optimized diskette.

Optimization Techniques
- 13 -

MACH2 - File Space Allocation Utility

GLOSSARY
========
CREATE BIT

This refers to a flag contained in the directory entry for a file. When
this bit is set, the operating system will be kept from deallocating any
unused space at the end of the file when the file is closed. Such a file will
never shrink in size. The file will remain as large as its largest
allocation. The flag is normally set by the DOS CREATE command.

CYLINDER

A cylinder is a term which represents all like-numbered tracks on all
surfaces of a disk. For example, on a two surface media, track zero of
surface zero and track zero of surface one are grouped together into cylinder
zero. Where a disk uses only a single surface, the terms cylinder and track
both represent the same space and are thus equivalent.

EXTENT

An extent contains data on the allocation of disk space. Each extent can
contain the allocation information for a maximum of 32 contiguous granules.
The contents of the extent tells you what cylinder stores the first granule
of the extent, what is the number of that granule, and how many contiguous
granules are in use in the extent.

GRANULE

A group of sectors is allocated whenever additional space is needed for
a file. This group is called a GRANULE and is always a constant size for any
given disk. The size of a granule generally increases with the increasing
size of the disk storage device.

K

A "K" is a term applied to 1024 characters of storage. When applied to a
disk, it would represent four sectors of space.

SECTOR

Each track of a disk is divided into subareas called sectors. Each
sector has an identifying number within the track. In LOOS and TRSDOS
systems, this sector usually holds 256 characters. The sectors are usually
numbered starting from zero on each track.

TRACK

The magnetic layer of particles on a disk's surface are magnetized into
concentric circles of storage during the formatting process. Each circule is
called a track. A typical 40-track disk has a density of 48 tracks per inch.
Thus the diskette region used has a lateral width of 0.833 inches.

Glossary
- 14 -

L S Q F B

This utility is designed to allow for a backup with format to be performed. Only floppy
drives may be used, and the backup performed must be mirror image. The syntax is:

-===--==
LSQFB :s :d (parm,parm,parm)

:s is the Source drive. The colon is optional.
:d is the Destination drive. The colon is optional.

The following optional parameters may be used:

ALL= parameter used to specify whether all cylinders
of the source disk will be read and copied to
the destination disk, or only allocated
cylinders will be used. The switch ON or OFF
may be specified, with the default being OFF.

Vl= parameter used to specify whether or not a
verify of the destination disk is to be
performed on the 1st pass. The switch ON or OFF
may be used, with the default being ON.

V2= parameter used to specify whether or not a
verify of the destination disk is to be
performed on the 2nd pass. The switch ON or OFF
may be used, with the default being OFF.

QUERY= Query for parameters not specified. The switch
ON or OFF may be used. The default is OFF

abbr: ON=Y, OFF=N, QUERY=Q, ALL=A

==
The LSQFB (Quick Format and Backup) utility will allow for the creation of a mirror
image backup of a source disk without having to format the destination disk prior to
executing the backup. The normal means by which a mirror image backup is made using
LOOS/TRSDOS 6.x is to first format a diskette using the FORMAT utility, and then use
the BACKUP utility to perform the backup. The limitations of LSQFB are as follows:

1.) Two distinct FLOPPY drives must be used.
2.) The source diskette must have been formatted using the LDOS/TRSDOS 6.x

FORMAT utility, and cannot contain any non-standard format.

LSQFB will perform a "single pass" format and backup. If LSQFB is entered with no
drives specified, prompts will appear for them. If drive numbers are specified, the
first drive number will represent the source drive, and the destination drive will be
the second drive number. If no parameters are specified, the defaults will be used.

Consider the results of entering the following command.

LSQFB 1 2

Drive 1 will be used as the source drive, while drive 2 will be the destination drive.
Prior to LSQFB performing any action, a prompt will appear to load the diskettes. Once
the proper diskettes have been installed, press <ENTER>, and the backup will begin. The
following actions will take place.

LSQFB - Utility
Page 1

1.) The source diskette will be logged in, to determine the type of format.
2.) Cylinder O of the destination diskette will be formatted.
3.) If cy"linder O of the source disk contains data, it will be read into memory.
4.) If cylinder O of the source diskette contains data, the information stored in

memory (see Step 3) will be written out to the destination diskette.
5.) Cylinder O of the destination diskette will be verified.
6.) Steps 2-5 will be repeated for all remaining cylinders.
7.) The following message will appear after the last cylinder has been verified:

Duplication complete 1 disk created

Replace destination disks and press <ENTER> to repeat
.. <R> to restart with new parameters

•.. or .•.. <BREAK> to exit program.

8.) Press <ENTER> in response to this prompt to make another mirror image backup.
Press <BREAK> to abort the LSQFB utility. The following prompt will appear:

Load SYSTEM diskette and hit <ENTER>

Place a system diskette in drive O and press <ENTER>, to return to the DOS level.

If it is desired to use LSQFB again with different parameters, press <R> in response
to the prompt displayed in step 7. Doing so will cause the drives to be prompted
for, and prompts wi 11 appear for a 11 parameters.

If LSQFB is to be restarted, or the command LSQFB (Q=Y) is entered, the following
prompts for the parameters will occur:

Duplicate unallocated tracks? (Y/N)
Verify on same pass? (Y/N)
Verify on second pass? (Y/N)

The first prompt relates to the ALL parameter. If it is answered with <Y>, all
cylinders will be read from the source diskette and written to the destination
diskette, regardless of whether or not the cylinder contains information. If this
prompt is answered <N>, only cylinders containing information will be read and written.

The next prompt relates to the Vl parameter. If it is answered with <Y>, all cylinders
on the destination diskette will be verified immediately after all writes. If answered
<N>, no immediate verify will be done.

The final prompt corresponds to the V2 parameter. If it is answered with <Y>, all
cylinders on the destination diskette will be verified upon completion of all writing
to the diskette. If answered <N>, there will be no second pass verification.

If an error occurs, an appropriate error message will be displayed, and a prompt will
appear requesting the course of action that is desired. During any LSQFB operation, the
<BREAK> key will be active, and can be used to abort the process.

I M P O R T A N T

LSQFB assumes that a mirror image backup is desired, and performs no check on the
destination diskette with respect to the existence of data. Any existing information on
a destination diskette will ALWAYS be destroyed. Also, LSQFB will NOT clear the Mod
Flags of files on the source diskette.

LSQFB - Utility
Page 2

L S C O M P

Compares two files, parts of files, diskettes, or parts of diskettes for a character
for character match. The proper syntax is :

===
LSCOMP filespecl TO filespec2 (parm,parm, •••)
LSCOMP :drivel TO :drive2 (parm,parm, •••)

The allowable parameters are:

REC=

NUM=

ALL

PRINT

CYL=

SEC=

Starting record number of the filespecs at
which the compare will begin (default is 0).

Number of records of a filespec or sectors of
a disk to compare.

Display each non-matching byte.

Send display to *PR as well as *DO.

Cylinder at which to start compare between two
drives (default is 0).

Starting sector of a diskette to compare
(default is 0).

Abbr: REC=R, NUM=N, ALL=A, PRINT=P, CYL=C, SEC=S

============================== ======;:;;::==================
This utility compares two files or two entire diskettes to determine whether or not the
information in or on them is identical. It is usually performed after a BACKUP or a
COPY to determine the validity of the data.

Observe the following command and output that is generated:

LSCOMP MAY/DAT:3 :4

MAY/DAT:3
MAY/DAT:4

contains
contains

17 sectors, EOF offset= 70
17 sectors, EOF offset; 70

Notice that the second filespec was indicated by a drivespec. This is the ONLY
exception to a complete filespec which is allowed. Since the files proved to be
identical, only the number of compared sectors followed by the end-of-file offset were
displayed.

In the case of differing files the following would occur

LSCOMP FISCAL82/DAT:3 FISCAL82/DAT:4 (R=4)

Posn= X'0005,00
29 bytes did

Posn= X'0005,BO
32 bytes did

F ISCAL82/DAT: 3
FISCAL82/DAT:4

FISCAL82/DAT:3 = X120,
not match.

FISCAL82/DAT:3 = X'54,
not match.

contains 18 sectors, EOF
contains 18 sectors, EOF

LSCOMP - Utility
P ag(~ 1

FISCAL82/DAT:4

FISCAL82/DAT:4

offset ;:, 100
offset :::: 100

= X'OO

"' X'OO

The display shows the record number of a discrepant sector followed by the relative
byte, and the contents of that byte in each filespec. The second line displays the
total number of subsequent bytes which do not match. If the ALL parameter had been
specified, each of the sixty-one bytes would have been displayed in the first format.
Since the parameter R'-4 was specified, the compare began at record 4.

To compare one disk to another use drive numbers instead of
cylinder and sector number may be specified either in X1 00 1

integer. The number of contiguous sectors to compare may also be
NUM"' parameter.

filespecs. The starting
format or as a decimal
specified by using the

Unlike file to file comparisons, the disk to disk compare will display the currently
accessed sector re1ative to the current cylinder. As much information as possible wil1
be read into memory from the source drive (the first drivespec). This information will
then be compared to the destination drive. If discrepant bytes are detected the
following will appear on the video:

Cyl X'OD, Sec X1 00, Byte X1 00, Drive 2 = X1 6D, Drive 3 = X1 31
3078 bytes did not match.

If the ALL parameter had been specified then each different byte would display in the
first line format. To send the output to the printer as well as the video, specify the
PRINT parameter.

LSCOMP - Utility
Page 2

X-FTS - X-Modem protocol File Transmission System

General Information.

Invoking X-FTS

USING X-FTS

X-FTS PARAMETERS

TABLE OF CONTENTS

RS-232 PARAMETER SETTINGS . .

JCL EXECUTION OF X-FTS

USING FILTERS ON THE RS-232 DEVICE

OPERATING SYSTEM PECULIARITIES

1

2

3

5

7

7

7

7

X-FTS/CMO: Copyright 1984 by Rick C. Francis, All rights reserved. X-FTS is
published by MISOSYS, Inc., Sterling VA 22170.

LOOS and LS-DOS are trademarks of Logical Systems Inc.
TRSDOS is a trademark of Tandy Corp.
DOS PLUS is a trademark of Micro Systems Software

GENERAL INFORMATION

This documentation covers the Model I/III version of X-FTS which
functions under the LOOS 5.1 operating system. It also covers the TRSOOS 6.x
or LS-DOS 6.x version of X-FTS called PRO-X-FTS. The PRO version also
operates under DOS PLUS IV. The specific version of X-FTS is noted on the
diskette label supplied with this package. X-FTS provides the user with a
communications tool to transmit and receive disk files via an industry
standard protocol which effectively supports error-free transmission.

X-FTS - l

X-FTS - X-Modem protocol File Transmission System

Invoking X-FTS

X-FTS is a general purpose file transmission utility for use with LS-DOS
6.X, TRSDOS 6.X and DOS PLUS IV (PRO-X-FTS), or LOOS 5.1 (X-FTS). It allows
you to send any file to another computer error-free via the RS-232. The
program is compatible with the Christensen or XMODEM protocol which is very
popular with CP/M and MS-DOS users. The syntax is:

FTS x filespec (parameters)
FTS *x filespec (parameters)

x - S to send or R to receive
*Sor *R - Forces JCL mode of execution

filespec - Name of file to send or receive

Par arneters:

ABS=sw - If specified in receive mode,
existing files will be replaced
without prompting. Default is OFF.

BLOCK=b - Specifies the size (in bytes) of
the data blocks. Default is 128.

DEVICE=s - Specify alternate RS-232 device.
Default is "CL 11 •

EOF=sw - If specified in send mode, the
end-of-file will be properly
maintained to the byte level.
Default is OFF.

FAST=sw - Turns interrupts off during
block receive for high baud rates.
Default is OFF.

KEY=b - Specifies a data encryption key.
Default is O (no encryption).

LRL=b - In receive mode this value will
be used as the Logical Record
Length for new files.
Default is O (256 byte LRL).

Parameters continued on next page.

X-FTS - 2

USING X-FTS

X-FTS - X-Modem protocol File Transmission System

NOTIFY=b - Specifies the number of audible
beeps to sound when the program
terminates. Default is O. If
given without a value, 3 is used.

QUIET=sw - If specified, nothing will be
on the screen during file
transfer. Default is OFF.

RETRY=b - Specifies the maximum number of
retries allowed on one block.
Default is 9.

Abbr: All parameters except ABS may be
abbreviated to one letter.

Notes:
- 11 sw 11 is a switch value (ON or OFF).

11 b" is a byte value in the range Oto 255.
"s" is a string (i.e. 11 CL 11 or "*CL")
NOTIFY not supported under LOOS 5.1
ABS and LRL valid in receive mode only.
EOF valid in send mode only.
For Christensen protocol, use default
values for BLOCK and EOF.

X-F TS may be used to transfer any file to another computer provided that
the other computer is running X-FTS or a compatible program. we will refer to
your computer as the "local" computer and the other computer as the "remote"
computer. The two computers may be side-by-side connected directly to each
other with an RS-232 cable or they may be hundreds of miles apart connected
by telephone lines. For simplicity, we'll assume that both computers are
running TRSDOS 6.2 with X-FTS and that they are connected with 300 baud
modems. Suppose we want to send the file "IYIYFILE/DA T" from the local computer
to the remote computer:

1. LOCAL: SET *CL COM <ENTER>
REMOTE: SET *CL COM <ENTER>

2. LOCAL: SETCOM (8=300,P=OFF ,S=l,w=8) <ENTER>
REMOTE: SET COM (8=300,P=OFF ,S=l,W:::8) <ENTER>

4. LOCAL: COMM *CL <ENTER>
REMOTE: LINK *KI *CL <ENTER>

and LINK *DO *CL <ENTER>

X-FTS - 3

X~FTS - X-Modem protocol File Transmission System

The rernote computer is now set up as a "HOST" computer and the local
computer acts as a terminal to the remote. The local user can now give
commands to the remote computer and see the results as though he were using
the rn1note computer directly. From this point on, the transfer of files can
be totally controlled by the local user. The following commands are issued by
the local user:

t-1, FTS R MY FILE/DAT (GlUH.:: f) <ENTEH>

T> <O>
(C(J/viM function to enter system command)

✓' ;.: ·re C fv'lY.-:-I! c;r~AT < ·:::NrE·• ,::, ·,, Cl, , ! s.i .• J I r •.. <..) L _h,,,-

The file transfer will now take place. During the transfer, the local
computer's screen will show the number of each block as it is transferred. It
will also indicate the number of errors detected during the transfer. Each
time an error is detectedr the block is re-transmitted until the block is
sent error-•free. Vvhen the file transfer is complete, the local computer will
be returned to the COMM program, and the remote computer will return to
TRSDOS f~eady.

Under LDDS 5.1, thi:~ command sequence above would be as follows:

l. LOCAL: SET *CL. RS232x (8::.:300,W=B,P=OFF ,S=l) <ENTER>
F!.EMOTC: SET ,)(•CL RS232x (B:::300,W=8,P=OFF,S::::l) <ENTER>

P.EMOTE: Sarne as step 3 above.

The local computer now controls the transfer of files.

3. FTS R lVIYFILE/DA T (G:IUIET) <ENTER>

4. T> <cc:)

(Fxit LCOMM to LOOS Ready)

~_;, FTS S. MY FILE/DAT <ENTEi~>

6. LCOMM ·*CL <ENTER>

In step 1> F~S232x should be replaced with the RS-232 driver name appropriate
for your computer (RS232 T, RS232R, RS232M, or RS232L for the Model III, Model
I R)S interface, MAX-80, or Model I LX-80 interface, respectively).

X-FTS - 4

X-FTS - X-Modem protocol File Transmission System

X-FTS PARAMETERS

ABS

When receiving files with X-FTS, this parameter may be used to force
X-FTS to replace an existing file without prompting the user. The ABS
parameter defaults to "OFF" unless X-FTS is running in JCL mode in which case
it defaults to "ON". When sending files, this parameter has no effect.

BLOCK

The BLOCK parameter allows the user to set the size, in bytes, of the
data blocks. The sending and receiving side must use the same value for this
parameter. The default block size is 128. This is the block size used by the
XMODEM protocol.

DEVICE

X-FTS normally uses the device "*CL" for RS-232 communications. If you
use a different device name for the RS-232, you must specify this with the
DEVICE parameter. Under DOS PLUS IV, the RS-232 device is defined as "@RS"
and the DEVICE parameter has no effect.

EOF

The CP/M operating system does not maintain its end-of-file marker down
to the byte level. CP/M files are always some integer multiple of 128 bytes.
Usually, a CONTROL.-Z is used to mark the end of a text file but binary files
have no byte-level EDF marker. The XiViOOEM protocol was first designed for
CP/M systems so it provides no method of maintaining the EDF to the byte
level. Under the TRSDOS family of operating systems, byte level EDF is
maintained in the directory. By using the EOF parameter on the sending side,
X-FTS will maintain the EDF marker during the transfer. EOF mode detection is
automatic on the receiving side. The EOF parameter defaults to "OFF".

FAST

During block transfer, X-FTS normally allows interrupts to occur, this
keeps the system clock accurate and allows for BF~EAK key detection. For high
speed transfers, the RTC interrupt can cause characters coming from the
RS-232 to be lost. Use the FAST parameter to cause X-FTS to disable
interrupts during block receive. CAUTION: using the FAST parameter, will
cause the system clock to lose time and will make BREAK key detection
sluggish. The FAST parameter has no effect in send mode. Note: Due to the
nature of the RS-232 driver for the Model III and MAX-80 (under LOOS 5.1),
the FAST parameter must i\JOT be used. These drivers, with their large (128
byte) interrupt driven RS-232 buffer, will have no problem with high-speed
transfers (9600 baud or less).

X-FTS - 5

X-FTS - X-Modem protocol File Trm,smlaalon System

KEY

The KEY parameter can be used to encode data being sent or decode data
being received. If it is necessary to use a public access bulletin board to
send a private file to another user, the sender can encode the file with
KEY=N where N is a number from 1 to 255. At some later time, the receiver can
download the private file from the bulletin board using the same KEY value
used to send the file. The data encryption method is a very simple one and
could be broken fairly easily. However, it should deter the casual snoop. The
default value for KEY is O which produces no encryption.

LRL

The XMODEM protocol provides no means of passing file attributes (i.e.
protection level, logical record length, visible/invisible status, etc.) from
the sender to the receiver. The LRL parameter is used in receive mode to set
the logical record length of the received file which did not already exist on
the receiver's system. This value can be obtained from the sender's
directory. The default value for LRL is O (256 byte logical record length).
The LRL parameter has no effect in send mode.

NOTIFY

If the NOTIFY parameter is specified, X-FTS will provide an audible
indication of the transfer status at the termination of the transfer. If the
file transfer was successful, the beep(s) will be short and high pitched. If
the file transfer was aborted due to some error, the beep(s) will be of
longer 'duration and lower pitch. This parameter is ideal for long files or
for multi-file JCL controlled transfers. The NOTIFY parameter defaults to
"OFF" if it is left out of the parameter list. If NOTIFY is specified with no
value or if NOTIFY=ON is specified, then NOTIFY defaults to 3 beeps. Any
value from O to 255 may be specified. NOTE: This parameter is not supported
under LOOS 5.1

QUIET

When X-FTS is running on a "HOST" computer, output sent to the display
also goes to the RS-232 device. Since X-FTS normally displays the block
number and error count on the screen, this information would be intermixed
with the data being sent to the RS-232. Therefore, when X-F TS is being run on
a computer in host mode, this parameter must be specified to prevent this
intermixing of data. Since X-FTS will be used quite often by a computer
running in host mode, it is set-up to allow the user to change the program to
force QUIET, mode to default to "ON". Simply COPYing FTS/CMD to XFTS/CMD (or
RENAMEing FTS/CMD to XFTS/CMD) will cause X-FTS to default to QUIET mode. To
avoid using the QUIET parameter, use XFTS/CMD in host mode, and FTS/CMD when
not in host mode. With either program, you can override the default by
explicitly specifying the QUIET option.

X-FTS - 6

X-FTS - X-Modem protocol File Transmission System

RETRY

The RETRY parameter allows the user to set the maximum number of
attempts that should be made in sending any one block before the transfer is
aborted. This parameter also directly affects the amount of "silence" that
can occur between blocks before X-FTS declares a "time-out error". The
default value for this parameter is 9 which allows up to nine attempts to
send a particular block and allows about 25 seconds of delay between blocks.
Specifying RETRY=0 will allow an infinite number of block-send attempts and
about 6400 seconds of delay between blocks.

RS-232 PARAMETER SETTINGS

X-FTS uses a binary transfer protocol so any byte value from zero to 255
(decimal) is perfectly valid. Therefore, the RS-232 hardware must be set for
8-bit word size, and no parity. Number of stop bits and baud rate are not
critical to the operation of X-FTS.

JCL EXECUTION OF X-FTS

X-FTS may be used within a JCL file to transfer several files without
operator intervention. X-FTS detects that JCL execution is active and
modifies its execution somewhat. During JCL execution, nothing will be sent
to the screen including the start-up banner. You may over-ride this with the
parameter "QUIET =N". A simple JCL procedure could be created using the
PARMDIR program from MISOSYS to allow single command multi-file transfers.
(See MF TS/ JCL on the distribution diskette).

USING FILTERS ON THE RS-232 DEVICE

Any filtering of the data input from or output to the RS-232 device,
will interfere with the proper operation of X-FTS. PRO-X-FTS will detect the
presence of any filter(s) and will skip past each filter in the device chain
until it finds the actual RS-232 driver. Under LDOS 5.X, there must be no
filter on the RS-232 device during the X-FTS transfer.

OPERA TING SYSTEM PECULIARITIES

TRSDOS 6.2

Under TRSDOS 6.2, the COMM program uses only the hardware interrupt
function provided by the Radio Shack RS-232 interface to receive incoming
characters. On entry to X-FTS, the COMM interrupt function is disabled so
that no characters are "stolen" by the COMM program. Since PRO-X-FTS uses the
Library Overlay Region of memory (x'2600' - x'3000'), it can be executed from
within COMM by pressing the three keys <CLEAR>, <SHIFT>, and <0> together.
\/v hen the transfer is complete, control will be returned to COMM.

X-FTS - 7

X-FTS - X-Modem protocol File Transmission System

TRSDOS 6.1 & 6.0

Prior to n~S00S 6.2, the COMM program used a combination of hardware
interrupts and real time clock interrupts to pickup characters from the
RS-232. Because of this, X-FTS can not be executed from within COMM. You must
exit COMM and execute X-FTS then return to COMM after the file transfer is
complete. When receiving files under these versions of TRSDOS, <BREAK> key
detection will seem sluggish. Since there is no way to disable KFLAG$ support
(when a 80H is received from the RS-232, a system <BREAK> is simulated) under
these systems, <BREAK> key detection is turned off during block receive so
that if the file being received contains a byte equal to the current SETCOM
(BREAK=value), the transmission won't be terminated. Under all versions of
TRSDOS 6, X-FTS may be executed during the execution of a BASIC program with
the SYSTEM command:

SYSTEM "RUN FTS R filename (parameters)"

DOS PLUS IV

The most common terminal program used under DOS PLUS is the MTERM
program sold by Micro Systems Software. Unfortunately, this program uses the
RTC interrupt to receive RS-232 characters. X-FTS can not be executed from
within MTERM. As with the COMM program on TRSDOS 6.1 & 6.0, you must exit
MTERM to execute X-FTS. Under 00S PLUS, X-FTS may be executed from within a
running BASIC program with the SYSTEM command, however the DOS library
command "RUN" does not exist under DOS PLUS and is not needed:

SYSTEM "FTS R filename (parameters)"

LOOS 5.1.X

The LCOMM terminal package supplied with LOOS 5 does not have the
provision for executing a DOS command while running LCOMM. Therefore, you
wil1 have to exit LCOMM to execute X-FTS and then return to LCOMM when the
file transfer is complete. Do not specify the BREAK parameter when you invoke
the RS232x/DVR driver as this will invariably result in a false <BREAK>
detection as described in the TRSDOS 6.0/6.1 discussion above. X-FTS may be
executed from LBASIC as follows:

CMD"FTS R filename (parameters)"

X-FTS - 8

D

TABLE OF CONTENTS

GENERAL

ZGRAPH • •

BINCONV

xxBINCAT •

BINPLAY

DOSAVE •

BINPRINT •

• • • ill • • • • • • •

1

2

. 14

I> !l!' Ill 1' • 41 fl • •

ZGRAPH FILE FORMATS and EXAMPLES .

Authored and copyrighted {C) 1982/1983 by Karl A. Hessinger.
ZGRAPH is published by MISOSYS, Alexandria, VA.

LOOS is a trademark of logical Systems, Inc.
TRS-80 and TRSDOS are trademarks of Tandy Corp.

GENERAL
:::::.:::::::::::::

. • 16

. • 17

. 18

. . 19

• • 20

ZGRAPH is a powerful graphics editor package that gives you the tools to
construct screen images using your computer's block graphics capabilities.
These images may be saved to disk and converted into forms usable by BASIC
and machine language programs. Besides the ZGRAPH editor, the package
includes five utility programs you can use to create, display, and manage
ZGRAPH screens. ZGRAPH does it all: rapidly, totally, and economically!

The ZGRAPH package is provided on a 35-track single density data
diskette for LOOS Version 5.1. The PRO-ZGRAPH package is provided on a
40-track single density data diskette for LDOS/TRSDOS Version 6.

ZGRAPH - 1

Z G R A P H

ZGRAPH
===========

The ZGRAPH graphic utility package permits utilization of all of the
TRS-80 1 s capabilities in the creation of graphics screens. It will function
with those computers supporting TRS-80 block graphics. ZGRAPH is invoked
with:

===
ZGRAPH

ZGRAPH *
<F><A><Y>

Invoke the GRAPHIC editor

Re-enter ZGRAPH and
abort screen clearing

--

ZGRAPH Editor
=============

The ZGRAPH/CMD file comprises the graphics editor that allows creation of
graphic images. When 11 ZGRAPH 11 is typed from DOS Ready, the machine 1 anguage
program will load and take control. A graphic logo and a copyright message
are displayed during initialization to inform you that ZGRAPH is loading. If
you inadvertantly exit from ZGRAPH without saving your screen images to disk,
you may recover your images by re-entering vi a 11 ZGRAPH * 11 then issuing the
commands, <F><A><Y> to recover the screens.

When ZGRAPH is ready for use, the screen will clear and a flashing
graphic cursor will be displayed in the upper left corner of the screen. This
is the primary cursor and indicates that ZGRAPH is in the graphics mode. This
mode is also the command mode. ZGRAPH possesses two sets of commands, primary
and secondary. Primary commands are available anytime the flashing graphic
cursor is displayed. Secondary functions are invoked by first depressing <F>
and then the appropriate function code. A 'help' list of commands at both
levels is available by typing <H> for primary commands or <F><H> for
secondary functions. The respective keystrokes will display the complete list
of primary or secondary commands available. The <BREAK> key can be pressed to
abort most commands.

Primary C011111and List

<C>ursor home
<D>raw mode
<E>rase mode
<F>unction

<H>elp
<I>nsert text
<L>ocate marker
<M>ove mode
<P>osition

ZGRAPH - 2

<R>everse
<S>et marker
<X>-fl i p
<Y>-fl i p

Secondary Function List

<A>bort
lank
<C>ircle
<D>up 1 i cate
<E>xi t

< F> il 1
<G>et
<H>e lp
<I>nput
<L>ine

Z G R A P H

<M>erge
<O>utput
<Q>uery

<R>ectangle
<S>ave
<T>ranslate
<U>sage
<V>iew

<W> i ndow
<X>change
<Z>ero
< +> Magnify
<-> Reduce

Many ZGRAPH commands and functions (such as <H>elp) overlay the lower
portion of the video display screen. Rest assured that your images are not
affected. At the point of execution of the command or function, the lower
portion of the screen will be restored. The screen may be restored after the
<H>elp command by depressing <ENTER>.

The TRS-80 Graphics Screen

The video display screen of the Model I or Model III TRS-80 consists of
1024 bytes of memory arranged as 16 rows of 64 columns. A Model 4 TRS-80
compatible machine has a display screen of 1920 character cells arranged as
24 rows of 80 columns. Each memory location is capable of displaying one
ASCII or special character or any combination of the six (2 wide by 3 high)
graphic dots [Note: A Model 4 displays the two lower graphic blocks· as 2 wide
by 1 high]. These graphic 'dots• will be referred to as pixels (picture
elements) in these instructions. When considering the screen as 11 m11 rows of
"n 11 columns of text, the rows are numbered <O to m-1> starting with the top
row and the columns are numbered <O to n-1> from left to right. In the
graphics mode, the pixels are numbered O to 2n-1 [127/159], from left to
right along the X-axis and O to 3m-l [47/71], from top to bottom. ZGRAPH

lows any of the 160 (224 on the Model III/4) possible characters {ASCII,
graphic and special) to be disp·layed at any point on the screen.

PRIMARY COMMANDS

The following paragraphs describe the operation of the primary commands.

Cursor Movement

Cursor movement depends on the mode that ZGRAPH is in. In the graphics
mode (when ZGRAPH is first entered), movement is achieved using the number
keys 1-4 and 6-9 or the four ARROW keys. This allows convenient movement of
the cursor using the numeric keypad as shown in Figure I (the regular number
keys will also work). The keypad arrangement of:

ZGRAPH - 3

Z G R A P H

\ I I
7 8 9
4 * 6 --
1 2 3

I I \

Figure I - Numeric keypad

is directly related to the movement of the cursor. Pressing <4> will move the
cursor to the left and <8> will move it up. The corner keys <7>, <9>, <1> and
<3> will move the cursor diagonally. All keys will auto-repeat after a short
delay. The repeat rate may be set to fast or normal. On the Model I/III, the
faster repeat is activated by simultaneously depressing the <SHIFT> key along
with the movement key. Under DOS Version 6, the fast or normal rate is set by
using the <Fl> key to invoke the fast rate and the <F2> key for the normal
rate. [On the Model I/III, the keys are also additive; depressing <6> and <9>
simultaneously will move the cursor in a direction between right and
diagonally to the upper right. Pressing <7>, <4> and <1> simultaneously will
move the cursor to the left more rapidly than <4> alone, but pixels will be
skipped.] The screen wraps around on all edges. If you go off the screen to
the left, you will reappear on the right. The same is true of the top and
bottom. The <C>ursor Home command will return the cursor to the upper left
corner of the screen. Now that you know how to move the graphic cursor let's
examine the three modes that the cursor may be in.

<D>raw Mode

In this mode, the cursor will leave a trail of bright graphic pixels
everywhere it goes. [If you are using the additive feature of the cursor
movement keys, the effect will be to produce a dotted line.]

<E>rase Mode

This mode is the reverse of <D>raw. Everywhere the cursor is moved, the
graphic pixels will be turned off (dark). Be sure to cancel this mode by
selecting <D>raw or <M>ove as soon as you no longer need it to avoid
accidentally erasing pixels.

<M>ove Mode

This is a non-destructive means of moving the cursor. When in this mode,
the cursor may be moved through existing graphic or text locations without
disturbing the contents.

ZGRAPH - 4

Z G R A P H

<S>et Marker

Certain functions such as line, rectangle and duplicate require two
points of reference to accomplish their job. One reference point is always
the current cursor location. The other point is established with the <S>et
command. When <S> is depressed, an invisible marker is placed at the current
cursor location. The cursor may then be moved to establish the second point
of reference. On1y one marker may be <S>et at any one time. If you <S>et a
new point, the old one will be lost. To view the location of the marker use
the <L>ocate or <P>osition commands.

<L>ocate Marker
-- ------- --------

This command will cause the <S>et marker to flash for a short interval.
When the marker stops flashing, other commands or cursor movement can be
executed.

<P>osition

This command will display the row,column and x,y pixel positions of the
cursor and marker. It also displays the current mode. <ENTER> will terminate
the display of the positions. Information similar to the following will be
displayed when <P> is depressed.

-- Mode -- X - coor y - coor Column Row
---------- -------- ======== =-==:::== -------------- ---------

Move Cursor 87 48 43 16
Marker 29 22 14 7

<I>nsert Text

This mode is distinguished by an underline cursor. The mode will remain
active unti1 <ENTER> is depressed. While in the text <I>nsert mode~ cursor
movement is via the arrow keys. The cursor is non-destructive of both
graphics and· text. Simply move the cursor to the desired position and start
typing text. The cursor will advance after each letter is entered. The screen
wrap-around in the text mode is identica1 to the graphics mode when the arrow
keys are used; however, when text ts entered, the 1ine will be advanced if
you go off the right edge. The cursor wi 11 not move past the bottom edge of
the screen. Remember when you see the effect of entering text on the
surrounding text, that each text character occupies the same space as six
graphic pixels {2 x 3). Three special entries are available in the. text mode:

<CLEAR><SPACE> - wi11 enter a graphic blank instead of the normal
ASCII blank entered with the space bar. This is important if you
<R>everse.

<CLEAR><@> - will enter a full graphic block (chr$(191); a11 pixels
on).

ZGRAPH - 5

Z G R A P H

<CLEAR><-> - on the Model III/4 only, will display a reverse video
question mark. Two hexadecimal digits may then be typed (they will
not be displayed) and will be interpreted as the character they
represent. This allows access to the Model III special character set.
For example, depress <CLEAR><-> then <E><F> and the copyright symbol
wi1l be displayed. You will always get the special characters and not
the alternate space compression characters.

<R>everse

This command wi 11 reverse the screen video. All bright graphk areas
will become dark and vice versa. Text will not (and can not) be reversed. If
you want spaces between text to remain dark when the screen is <R>eversed,
use the space bar when entering text otherwise use <CLEAR><SPACE> as
explained under <I> above.

<X>-Flip

This command will create a mirror image of the screen about the Y-axis.
The graphics will be a true mirror image and the order of text characters
will be reversed but, of course, the individual text characters cannot be
reversed. A second <X>-Flip will restore the screen to its original
configuration.

<Y>-Flip

The same as <X>-Flip as described above except about the X-axis.

SECONDARY FUNCTIONS

The secondary functions of ZGRAPH are obtained by depressing <F>. At the
prompt,

Function?

the following functions are available (if you decide not to enter a function,
depress <ENTER> to return to the command mode).

ZGRAPH - 6

Z G R A P H

ZGRAPH Data Transfer Functions
--

ZGRAPH has a number of in-memory screen buffers in addition to the video
display screen. The number of buffers varies with the amount of memory
available. All but one of these buffers are general purpose buffers and are
available to the user to store displays. This is useful when creating a large
graphic consisting of several ZGRAPH images or in creating those images using
the <M>erge function. ZGRAPH can also load and save images to disk files. All
data moving to and from the disk passes through the primary video display.
The last internal display buffer is best described as the error recovery or
auxilliary buffer. When any function is executed that destroys an existing
screen display (lank, <G>et, <I>nsert text, <L>oad, <M>erge, etc.) the
current display is automatically saved to the auxilliary buffer prior to the
function being executed. If you discover that you made an error (<M>erged the
wrong display for example), you may recover the original display using the
<A>bort command. Figure II below shows how data is moved within ZGRAPH.

<G>et

Video

Display

-------automatic------>
on <D> <F> <G> <It>

<M> <W> <Z> <+> <->
<-------- <F><A> --------

------- <F><S><F>
or <F><O><F>

<------ <F><G><F>
or <F>< I><F>

------>

Auxilliary Buffer

Disk File

I
I
I
I _________ I

I n I
I I I- -------1 I

---- <F><S> --->

<--- <F><G>

I I I
I- I I
I I-

I I 1-
Screen Buffers _I

Figure II - Data movement within ZGRAPH

Get is the function for loading the video display screen. Pressing <G>et
will prompt the question,

Get from uffer or <F>ile?

If uffer is requested, you will be prompted to select a buffer with:

ZGRAPH - 7

Z G R A P H

Buffer number (1-n)?

The current conten of the display buffer will be replaced by the contents
of the buffer that you specify. If you request the <F>ile form of get, you
will be prompted to enter a filespec via the message:

Fi1espec w/o ext for get> •.••••••••

Up to ten characters may be entered; eight for the name and two for the
drivespec (i.e., testpict:2). An extension of "/BIN" (binary) is assumed for
all ZGRAPH binary files. If a drivespec is not entered, all drives will be
searched. If no filespec is entered, ZGRAPH will use the last filespec
entered with either the or< ave commands. If you accidentally destroy
a display by <G>ettin9 another image, the original display may be recovered
with <A>bort. The command may be cancel1ed prior to execution by
depressing <BREAK>.

<I>nput

Reads a Multiple Binary File (/MBF type) from the disk and loads the
screen images into the in-memory buffers. You will be prompted to enter the
fi lespec as in the <G><F> subcommand functions except that the file extension
used W"i 11 be 11 /MBF 11 • Note that any memory buffers currently in use but not
contained in the /MBF le will be left unaltered. If the /MBF file contains
any buffer number that exceeds the highest buffer currently available, that
buffer ·image wi 11 not loaded.

<O>utput

Writes all of the
file. The file will be
can be reloaded with
BINPLAY/CMD program.

ave

in-memory buffers that have data in them to a disk
written in Multiple Binary File (/MBF) format which
the <I>nput subcommand function or used in the

This function will save the screen image to a disk file or a memory
buffer. The disk save will use a rectangular area of the screen described by
the cursor home position and the current cursor position. Saving to a buffer
wi11 use the entire screen. To save a screen image, first position the cursor
to the lower right-hand corner of the area that you wish to save. When <S>ave
is depressed at the 11 Function'? 11 prompt, you will be queried:

Save to uffer or <F>ile?

The and <F> options are the same as under <G>et. The next prompts wi 11
indicate the size of the screen that ZGRAPH is set to save. If you forgot to
position the cursor to the lower right corner of the area that you wish to
save, answering I N' to these prompts wi 11 return you to the command mode
without saving the image. Like <G>et, if no filespec is entered, ZGRAPH will
use the last filespec entered with either the <G>et or <S>ave commands.

ZGRAPH - 8

Z G R A P H

<S>aving does not affect the contents of the screen.

<M>erge

<M>erge allows you to superimpose one image over another. You will be
prompted for:

Merge from uffer or <F>ile?

The responses and remaining queries are the same as <G>et.
however, the current display is not cleared but rather, the
superimposed on top of it. In the merge process, ZGRAPH uses
rules to establish the merging of a "source" buffer/file
display:

Unlike <G>et,
new display is
the fo 11 owing
to the video

1. Any source byte will replace a video graphic blank (X 1 80 1).

2. If both video and source bytes are graphic, the source graphic
byte will be logically ORed (pixel by pixel) with the video byte.

3. If the video byte is graphic and the source byte is non-graphic,
the video will retain its current pixel configuration.

4. If the video byte is non-graphic, the video will retain its
non-graphic value.

<X>change

This function completes the data manipulation capabilities of ZGRAPH.
<X>change will prompt with:

<X>change Screen with Buffer (1-n)?

Enter a buffer number from 1 to n. The <X>change function swaps the contents
of the display with the specified buffer (the contents qf the screen are
placed into the buffer while the old contents of the buffer are placed on the
screen). The auxilliary buffer retains a copy of the previous screen image.

ZGRAPH - 9

<A>bort

The <A>bort command
inadvertantly destroyed.
<S>aving the old one, you
the query:

Z G R A P H

allows you to recover a screen display that was
For instance, if you <G>et a new image without
can recover with <A>bort. Depressing <A> will yield

OK to load auxilliary buffer?

Answering <Y>es will cause the auxilliary buffer to load into the display.
The reason for the question is that while <A>bort will allow you to recover
from other catastrophic errors there is no recovery from <A>bort; that is,
invoking <A>bort will cause a permanent loss of the current screen display.
If you want to preserve the current screen, do a <S>ave just prior to issuing
the <A>bort function.

ZGRAPH Graphic Generation Functions
--

The following functions are used to generate various images.

<C>ircle

The <C>ircle function will draw a circle or an arc around the current
location of the cursor. You will be prompted for 11 Radius? 11 which is in units
of pixels along the Y-axis. The next prompt is for 11Starting arc (0-7}>".
This value represents the number of the arc as illustrated in figure III. The
last prompt is for 11 Ending arc (0-7}? 11 • For instance, an arc from zero
degrees to ninety degrees is 0-1. To draw a full circle, specify arc Oto arc
7. A left half-moon would be arc 2-5. If ZGRAPH is in the <E>rase mode, the
arc(s) will be reset rather than set.

<D>uplicate

\ 2 I 1 /
3 \ I I o

+
4 I I \ 7
I 5 I 6 \

Figure III - Circle function degree diagram

The <O>uplicate command makes use of the marker created with the <S>et
command. First <S>et the marker in the upper left corner of the section of
the screen that you wish to duplicate. Move the cursor to the lower right
hand corner and depress <O>. The block to be duplicated has now been defined.
The graphic cursor is replaced with the underline cursor. Position this

ZGRAPH - 10

ZGRAPH

cursor (using the arrow keys the same as the insert-text mode with <BREAK> to
abort) at the upper left corner of the area where you wish to place the
duplicate block and press <ENTER>. As much of the block will be duplicated to
the bottom of the screen. If necessary, the duplicated block will wrap around
the right edge of the screen. The image contained in the block may be
repeatedly duplicated by depressing <D>.

<F>il 1

This function can be used to change pixels enclosed within a boundary.
In DRAW and MOVE modes, all pixels will be set until a boundary of set pixels
is reached. In ERASE mode, all pixels will be reset until a boundary of reset
pixels is reached. If no such boundary exists, the display screen edges will
be considered to be the boundary.

<L>ine

<L>ine wi 11 establish the best fitting (straightest) line between the
marker <S>et and the current cursor position. In ZGRAPH "move" or "draw"
mode, the Hne will be constructed with set pixels. In 11erase11 mode, the line
wi 11 be constructed with reset pixels. The. marker position will be updated to
the current cursor position after each <L>ine is drawn. The automatic
re-setting of the marker wi 11 provide an easy .way to cons.tru¢:t lines
connected end-to-end.

<R>ectangle

To.create a rectang;le of any size, first <S>et the fl}a:rker at the upper
left corner of the desired •.rectangle. Move the cursor to the. lower right
corner and depress <R>ectangle. The four si$.les of the rectangle wil 1 be
constructed as "set" or ttreset11 pixel$ depending .. on the mode as in <L>i~~-

<Z>ero

This function is used to fi 11 the rectangle formed by the cursor and the
marker with either alt pixels ON or al 1 pixels OFF. It is usefu 1 for clearing
a large block of the screen (or "whiting" a large block).

<+>Magnify

Th'is function, can be used to enlarge a particular rectengular area of
the screen display. It will magnify the graphics in the rectangle formed by
the marker and the cursor. V ou w1 l 1 be prompted to enter a atagnification
ratio in the range <2~5.>. For a magnification ratio of "2", each pixel is
mapped to a 2x2 pixel group; a magnification ratio of "3" snaps each'pixel to
a 3x3 pixel group; ~tc.

ZGMPff ··i"" 1.1

Z G R A P H

<->Reduce

This function can be used to shrink a particular rectangular area of the
screen display. It will reduce the graphics in the rectangle formed by the
marker and the cursor from a 2x2 pixel group to a lxl pixel group depending
on the reduction mode. You will be prompted to enter the reduction mode
<1,2>. Mode 1 will set a corresponding pixel if any one of the four pixels in
the 2x2 group is set. Mode 2 requires any two of the four pixels to be set
before setting the corresponding pixel in the reduction.

lank

lank gives you the options of clearing the display screen or any
buffer. It will display the prompt:

Blank <S>creen, uffer or <A>ll ?

If blank <A>ll is selected, you will be asked, "OK to blank all?" as a double
check of your intent. If <S>creen blank is selected, ZGRAPH clears the video
display screen. The screen is saved to the auxilliary buffer and may be
recovered if the blanking was inadvertant. Note that the blanking function
fills the target screen/buffer with graphic blanks (X'80'). If you select the
uffer blanking, you will be prompted to select a specific buffer.

<T>ransl ate

This function will translate all occurances of a character to another
character. After typing <T>, respond with the decimal value to translate and
the decimal value to result after the translation. The "find" and "replace"
character values may also be entered as their single key entry in addition to
their decimal ASCII value. For example, the letter "A" may be entered as
either 11 65 11 or 11 A11 (without the quotes). Note that <CLEAR-SPACE> and
<CLEAR-@> (graphic block 191) are equally acceptable as "single key entries".
You can rapidly change all text blanks to graphic blanks with this command.

<W>indow

The first thing you will notice when you depress <W>indow is that the
cursor disappears. While in the window mode, the entire screen display wi 11
move in response to the arrow keys. Any part of the image moved off of the
edges of the screen is lost. To terminate the window mode, press <ENTER>.
This command is very useful to reposition an entire image on the screen.

ZGRAPH - 12

ZGRAPH

<E>xit

This function provides a graceful exit from ZGRAPH to DOS Ready.

<U>sage

This function is used to obtain the status of the in-memory buffers. It
displays a graphic block next to all buffers which have data in them. The
graphic block "flag., is set by <X>change and <S>ave, and is reset by lank.

<V>iew

This function allows the rapid display of the memory buffers contents to
the video display screen. You win be permitted to specify the buffer range,
and a relative speed at which the buffers will be displayedt <1-9>. <V>iew
may be aborted by depressing <BREAK>.

<Q>uery

<Q>uery is used to question the operating system. On the Models. I/II I,
it obtains directory information. <Q>uery will issue two prompts as follows:

Directory of which drive ?
Display /IN or l<M>BF files ?

The first prompt is used to specify the drive number for the directory
information. The second is to specify whether you want to see the names of
the binary or multiple-binary files. It will then list a directory of all
files on the specified drive that possess the specified ex.tension. The drive
volume name and available space in 11K11 will also be displayed.

Under DOS Version 6, the <Q>uery command is used to access any DOS
library command. <Q>uery wi11 issue one prompt as f o 11 ows:

Convnand? •••••••••

You can then enter any library command such as "DIR /BIN:2 11 • When the DOS
command completes, you can return to the ZGRAPH screen by depressing the
<ENTER> key.

B I N C O N V

BINCONV: ZGRAPH File Conversion Program
--

The post-processing program, BINCONV/CMD, has been provided to allow
ZGRAPH created displays to be used in other applications. BINCONV will
translate the ZGRAPH binary file format to other formats. It is invoked by
entering the command:

===
BINCONV Run conversion program

===
ZGRAPH's standard file format is a pure binary representation of the

screen display. Each line of the screen memory is <S>aved as the values of
the memory bytes terminated by a carriage return (x 10D 1). A screen saved with
ZGRAPH would thus occupy a number of bytes equal to the number of rows
multiplied by one greater than the number of columns.

The BINCONV program will display the following menu of choices:

* * ZGRAPH file conversion utility * *
<1> - ZGRAPH to Load Module
<2> - ZGRAPH to Packed BASIC
<3> - ZGRAPH to BASIC Data
<4> - ZGRAPH to EDAS
<5> - Disk directory
<6> - Exit to DOS

Depress the appropriate number key for the format you desire. The
formats are as follows:

ZGRAPH to Load Module

The following prompts must be answered under this format mode:

Starting address { 15360/12288}?
[For 5.1.3; Transfer address { 73} ?]

Filespec to convert (w/o ext)?

For the Model I/III, the starting address defaults to the start of the
video display memory and the transfer address defaults to the system vector,
@KEY. The effect of choosing the default values (depressing <ENTER> in
response to the prompts) is to create an executable /CMD file that will place
your image on the screen and pause until a key is depressed, at which time it
will return to DOS. Under DOS Version 6, the file is constructed as a core
image which loads at the start of user RAM and returns to DOS Ready.

ZGRAPH - 14

B I N C O N V

ZGRAPH to Packed BASIC

This format mode will prompt for the following:

Array name { ZG}?
Starting index { 0}?

Starting line number { 100}?
Line number increment { 10}?

Input filespec (w/o ext)?
Output filespec (w/o ext)?

The default values will create a file with the extension of "/BAS". The file
will consist of packed graphics strings with each line consisting of the
string {ZG$(#)="packed value of one line of your image"} starting with an
index (#) of 0, line number of 100 and line number increment of 10.

ZGRAPH to BASIC Data

The following prompts must be answered:

Starting line number { 100}?
Line number increment { 10}?

Input filespec (w/o ext)?
Output filespec (w/o ext) ?

This option will create BASIC data statements starting with line 100 (if the
default is used). Each statement will consist of 16 decimal numbers
representing the sequential values of your screen image. The file will be
saved with an extension of /BAS to allow merging into your BASIC program.

ZGRAPH to EDAS

Prompts similar to "ZGRAPH to BASIC Data" will appear. The file that
will be created will have an extension of /ASM and will be in the EDAS
editor/assembler format. Each line of the file will consist of a DEFB
statement and 16 decimal values representing the values of the bytes of your
image. This file may then be merged into an assembler program. Under LOOS
Version 5, the file will be headered and line numbered. Under LDOS/TRSDOS 6,
the header and line numbers will be omitted.

Miscellaneous

The fifth menu option gives you the capability of displaying a disk
directory [under LOOS Version 5] or of executing a DOS command [under
LDOS/TRSDOS Version 6]. This is identical to the <Q> function of ZGRAPH.

To exit BINCONV, press <6> from the main menu.

ZGRAPH - 15

x x 8 I N C A T

xxBINCAT/CMD

These programs are used to print a single binary file or a concatenation
of single files to a printer. The RSBINCAT program supports the Radio Shack
DMP printers. The EPBINCAT program supports the Epson printers. xxBINCAT is
invoked with the command:

=========================~=================--------=--=--=---==

xxBINCAT (ADOLF,OENSE,RS2100) Run the printing program.

ADOLF - An EPBINCAT parameter used to force a line
feed after a carriage return.

DENSE - If entered, the entire graphic will be printed
in boldface via overstrike.

RS2100 - A parameter to be entered if the OMP2100
printer is being used (RSBINCAT only).

Abbreviations: A=ADDLF, D=DENSE

============~=====~~=======~===============--------------------

The BINCAT program will print the graphics cells stored in one or more
ZGRAPH binary (/BIN) files. If more than one input file is specified, BINCAT
will concatenate the images so they are printed left to right. Therefore, it
is possible to combine two or more screen images to make a larger "picture".
For instance, a large picture made up of six screens in a three across by two
high "picture" can be printed by first concatenating and printing the three
top images then concatenating and printing the three lower images.

When BINCAT ·is first invoked, it will display the prompt:

ZGRAPH filespec w/o ext?

Enter the file specification of a ZGRAPH binary file. BINCAT will continue to
prompt for additional file specifications until you depress <ENTER> by itself
to end the input. Each file identified will be concatenated for printing
across the page. If you depress the <BREAK> key, BINCAT will exit to DOS
Ready. Once all file(s) are entered, ZGRAPH will prompt with:

Enter magnification (1-9)?

The magnification value will cause printing to use as many dots vertically
and horizontally for printing a pixel as specified by the value. For example,
a magnification of "3" will print each screen pixel in a 3-dot by 3-dot
impression. When the printing is complete, BINCAT will give you the
opportunity to print another copy of the concatenated image. It does this by
returning to the "Enter magnification" prompt thus allowing you to specify
any desired magnification. If you respond with <ENTER> by itself, BINCAT will
return to the "Input filespec 11 prompt. If you enter a <BREAK>, BINCAT will
exit to DOS Ready.

ZGRAPH - 16

B I N P L A Y

BlNPLAY/CMO
===========

This program will perform a video display sequence of all buffers saved
in a ZGRAPH Multiple Binary Fi1e (IMBF). It is invoked via the command:

==:====~=======~============-================================-=

BINPLAY fi lespec (PAUSE,DELAY ,REPEAT) Invoke MBF p 1 ay

filespec - Specifies the file containing the screen
images. The default extension is "/MBF''.

DELAY=val - "Val" is specified as the relative length
of time a screen is displayed. The range of
values acceptable is <0-255>. Default is 128.

PAUSE=sw - If "sw" is specified as <ON>, then BINPLAY
will wait for you to depress <ENTER> before
displaying the next frame. Default is OFF.

REPEAT - Is specified to invoke a repeating play
of a11 screens until <BREAK> is pressed.

Abbreviations: O=OELAY, P=PAUSE, R=REPEAT

====-==========-===-~-----==· --------=--------------=---=-=----
The BINPLAY program is useful for displaying a small series of graphic

screens. It wHl display the sequence of screens saved from the ZGRAPH
in-memory buffers that are in use at the time that the ZGRAPH <O>utput
function is specified.

The DELAY parameter allows you to set the .. viewing" time of each screen.
The PAUSE parameter is used to suppress the automatic advance to each screen.
This mode is useful when previewing a Multiple Binary File. If the screens
are designed as a repeating 11 slide 11 show, then the REPEAT parameter wi 11
cause the play to automatically repeat the image sequence. It will play
continuously until <BREAK> is pressed.

ZGRAPH - 17

0 0 S A V E

DOSAVE Screen Saving Filter

DOSAVE is a keyboard filter that is similar to the DOS screen print
function. However, where the screen print directs an image of the screen to
the printer, DOSAVE will direct the screen image to a disk file specified by
the user. The screen saving filter, DOSAVE, is established by entering the
command (s):

======================-======================================
I
I For LOOS 5.1
! FILTER *KI using DOSAVE Enable screen saver I
I I
1---I
I I
I For LOOS 6.x I
I SET *OS to OOSAVE Reside filter module I
I FILTER *KI using *DS Enable screen saver I
I I

Once established, depressing <CLEAR><SHIFT><S> will activate the filter.
The prompt,

Filespec?

will appear on the screen. Enter the desired file specification (a default
extension of "/BIN" will be applied). The contents of the screen will be
saved in the standard ZGRAPH binary format. These screen files may be loaded
into ZGRAPH for further operations.

ZGRAPH - 18

B I N P R I N T

BINPRINT File Printing Program
--

This program provides the capability of printing a binary graphic file
to a printer that supports compatible block graphics (i.e. MX-80 with
GRAFTRAX or other MX printers with the ALTCHAR printer driver that is part of
the GRASP package). Printing is invoked with the command:

--
BINPRINT filespec (OFFSET,STRIP=value}

OFFSET

STRIP=value

Used for non-GRAFTRAX MX-80 printers.

Wi 11 convert any character above "value"
to a blank (X'20').

Abbreviations: O=OFFSET, S=STRIP
--

Typing 11 BINPRINT filespec" from DOS Ready will cause the specified file
to be sent to the printer. The default extension, /BIN, will be used if none
is specified. Note that the DOS screen print function <CONTROL><*> remains
active in ZGRAPH and may also be used if this feature has been selected using
the SYSTEM(GRAPHIC) command [and the screen print (JKL) option of KI/DVR for
the Model I/III LOOS 5.1 user].

The parameter, OFFSET, is used to add the decimal value 32 to graphics
codes in order to place the code value into the range proper for those
printers supporting the TRS-80 graphics but at a CHAR+32 value.

ZGRAPH - 19

FILE FORMATS and EXAMPLES

ZGRAPH FILE FORMATS
===================

The 11 /BIN" binary format file is composed of each video row of
characters terminated by a carriage return, <ENTER>. It will contain from one
to n rows of data based on the location of the cursor when the file was
saved.

The 11 /MBF" multiple binary format file stores a number of memory-buffer
images. It uses the first sector as a flag field to indicate which buffers
are saved in the file. Relative byte O stores the length of the flag field
<1-255>. Relative bytes 1-255 will contain an X'Ol' if the next image in the
file stores the corresponding buffer. An X'OO' indicates that the buffer is
unused and no image exists for it in the /MBF file. Each image is contained
in a lK (Model I/III) or 2K (Version 6) block [i.e. 4 sectors or 8 sectors].
The first image corresponds to the first flag containing an X'Ol'; the second
image corresponds to the second flag containing an X'Ol'; and so forth.

EXAMPLES

The following examples were generated using ZGRAPH. The printing was
accomplished using both Epson MX-8O GRAFTRAX and MX-1OO printers. The Graphic
Support Package (GRASP) available from MISOSYS was used to implement pixel
graphic printing on the MX-1OO for both the 1O-pica and 12-pica graphics. The
/BIN files for these graphics are included on your ZGRAPH diskette.

--+-------- ----..m-------: I : -~ : I . I : ~- : I :
!1::::::::i=--= ~-----· =·-=·C:::I!
= - - - - - = 1 ---------= I = - - - - - = - .. . - -....... : ... r;.~7 : ..•.......
:.-:-::, =I=--= . =--= 1 · .-.::7.: ~--~; I - • --••--- - •I;~ - - . - - -------- ---- ---- -------... ii : • : : •

::I -------------

PACMAN: MX-100/ALTCHAR-STD12

ZGRAPH - 20

FILE FORMATS and EXAMPLES

CASTLE: MX-80 GRAFTRAX/Condensed-doub1e strike

Our Mission To 90 \>t)ere r,o mafl has, @VE>f' before,,.,.@

ZGRAPH - 21

FILE FORMATS and EXAMPLES

EMPIRE: MX-80 GRAFTRAX/Condensed-doub le strike

El

EMP I : MX-100/ ALTCHAR-STOJ.0

ZGRAPH - 22

FILE FORMATS and EXAMPLES

I. ._

DEATHSTR: MX-100/ALTCHAR-STO12

STARWARS: MX-1~0/ALTCHAR-STD12

ZGRAPH ,, 23

HILBERT CURVES

<== to
Fair· fax City

FlLE FORMATS and EXAMPLES

HILBERT: MX-100/ALTCHAR-STD12

North

Prosperity Ave. t
Route 236

Little River Turnpike
<======
Lane

TCUG General Mellbership Meeting
7:3~ PM, Each month, 3rd W&!dnesday
Wakefield Forest Elenwntary School
on Iva Lane. Visitors welcome.

TCUGMAP: MX-100/ALTCHAR-STD12

ZGRAPH - 24

I-495

I-495

Duke
St.

••

··········-···----·····-················--

TABLE OF CONTENTS

INTRODUCTION

GENERAL INFORMATION

COMMAND ENTRY

PROCEDURES TO CREATE A PDS .

PATCH TO SYSO/SYS (5.0.2 & 5.0.3)

PDS(APPEND)

POS(BUILD) .

PDS (COPY)

PDS(DIR) .

PDS(KILL)

POS(LIST)

PDS(PURGE)

PDS(RESTORE)

Authored and Copyrighted (C) 1982 Roy Soltoff

2

3

5

6

7

8

I?.

. 14

16

. . . . 18

• • 20

. 22

. 25

Published by MISOSYS, PO Box 4848, Alexandria, VA 22303-0848.

LDOS is a trademark of Logical Systems, Inc.
TRSDOS is a trademark of Tandy Corp.

Partitioned Data Set Utility

INTRODUCTION

This materii:11 documents the imp1Nnentation and us1:i of the Partitioned
Data Set (PDS and PRO-PaDS) IJtility, a copyrighted product of MISOSYS. The
PDS product functions solely with specific releases of LOOS Version 5 and is
supplied on a 35-track single density diskette. PRO-PaDS f~nctions with
L.OOS/fR~~iJOS VE:rsion 6 <t.Hl is supplied on a 40--track sfr1g!e dens Hy diskf.itte.
PDS ~jds limited capabilities for partitioning data sets into more than one
logical file. fhis is accomplished by constructing a mini-directory within
tl1e PDS and supplying various utilities to interface witl1 the m~ltiple men~er
files constituting a PDS.

The POS also c0ntijins a loader module that interfaces with the LOOS
sys t(~l\i loader :i;o that execut,ib 1!0 members (!CMD type f1 i e~;) may be r.:,xecuted
dir<:::ctiy from "LDOS Read_y 11 just as if U1cy we·re reguL:ff f·ile::.. Data. f·lle
me,nbers ijre known by the loader and are inhibited from execution.

VarioJs utility prog,·ams are supplied to support the 1nanagement of the
PDS ., They pc~rform ~.ped f 1 c f1.rncthi11s ,:;uch as directory di sp 1 ay, 1nember
1.1.ddin9; ldllfoq. purgln13, copying, and appending. The 1:-:ntire PPS Utility
oackage is itself supplied as a partitioned data set.

PflS ~>i,b ciei)·i9ried to offf:t I .. D05 u~ers a. co.pability of cus:torn ·library
f.JerH',ratior.. ,1\dd·;tlord:,.l ly, it provides advantages of rJ-lsk space comprE:S:,·1on
~hen storing 1nany sniall data files for small /CMD files) in one PDS. This is
part h::1(, a r1 y u :::, E:· fo 1 , .:i::, vie ·1 l ~r:; nece ~; ,;; ~1 r y, for the h,1rd d h k en v ircnmen t.

i\s morr\ i. DOS, usi?r:, make use of the PD5 functiN1, lmn1ri ab !y tht:i·,~ 1111 l ·1
b~ requests for additional capabilities. You a~e encouraged to makE your
req11ests known to MISOSYS. We will do our best to plan an.orderly evolution
uf t!,is producL Tc, keep you d"irf'.Ctly inform1:~d of PDS .:~rih2rncem;,,nt:; and
pos<::,'ib.!e c:Jrrr~ct·\onsi pll:'.!dSe take a mmn1:~nt ar:ci compl,:~t:e the IN:1rrdntJ'
reqi~tratian form and return it to MISOSYS. The reqistration number is
ln~ated on the diskette label. Thank you and I wish that-you receive splendid
~se of this product.

General Info - PDS Library
- 2 -

Partitioned Data Set Utility

GENERAL INFORMATION

Partitioned Data Sets (PUS} are not new to LOOS. The two library files,
SYS6/SYS and SYS7/SYS, are PUS structures [under Version 6, SYS8/SYS is also
a partitioned data set]. Katzan, in OPERATING SYSTEMS, A PRAGMATIC APPROACH,
defines a partitioned data set as "a data file that is divided into
sequentially organized members." Katzan further states, "Each PDS includes a
directory that points to the beginning of each member. Data sets of this type
are most frequently used to store object programs - each member corresponds
to a single object program. The PDS as a whole is referred to as a library.
Operating system libraries and user libraries are stored in this fashion."
This definition describes exactly, the two [or three] LIB files in LOOS.

The LIBrary PARaMeter (LIBPARM} table located in SYSl/SYS contains two
code values for each library command. One is a code which identifies the
proper SY Sn/SYS file containing the program which executes the command. The
other code is an ISAM directory entry number used to identify its entry in
the ISAM table directory located within the PDS SYS file itself. The LIBPARM
table is used by the LOOS Command Interpreter which parses the command line
and checks if the "filename" entered by the user matches up with a LIB
command listed in the table. When a match is found, linkage is established
with the system loader in SYSRES to denote the LIB file and the specific
member entry satisfying the LOOS command entered. The member entry is denoted
by the ISAM number assigned.

The system loader, opens the SYSn/SYS LIB file and reads through the
ISAM directory table stored in the LIB file looking for a match to the ISAM
entry number supplied by SYSl/SYS. This ISAM directory contains information
on the position and transfer address for each member in the file. Once the
system loader finds the appropriate entry, it positions the file to the
starting point of the member then loads and executes the module.

The POS structure has provided a technique for combining separately
executable object programs into one file thereby saving directory slots. It
also serves to save disk space because each member is concatenated without
having to reside on a granule boundary. It also saves time by not having to
load an entire 10K-15K file just to get a few hundred bytes or a few thousand
bytes of program loaded if all LIB commands were just one big file. The
overhead of having to read and search the member directory . is minimal. This
technique has been used for years on mainframe and mini computers.

The POS utility functions with LOOS 5.1.x (Model I and Model III}. POS
will function with earlier Model I versions 5.0.2 and 5.0.3 once a minor
patch is applied to SYSO/SYS. This patch is identified a.s "SYSOPbSA/FIX 11

later in this documentation. The PRO-PaOS utility functions wHh LOOS/TRSOOS
version 6. ·

The PDS command can be used to create custom user libraries. A librar)
could be a collection of a dozen utility programs - all stored under one name
but directly executable by specifying the library name followed by the member
name. Consider for a moment, that you have built a library containing
PROCESS, OSMBLR, BINHEX, EDAS, and XREF. The library name MYLIB was chosen.
You can then execute EDAS by entering:

General Info - PDS Library
- 3 -

Partitioned Data Set Utility

MYLI 8 (£OAS)

at the "DOS Ready 11 prompt. If you wanted to build a custom DOS command
library, you could use CMDFILE [Version 6 users could use PRO-CESSJ to
extract DIR, COPY, KILL, DEBUG, ROUTE, and RESET from SYS6/SYS and SYS7/SYS

db ·1·1 'h . t r-yc-lIB T' 1d ' C''Y"6/SV'' i ''V"?;~yc-an u1utemrnoa user::,:) .• i1enyoucou_ pur-ge.):::. ,.::,ar11.,::,._') ::>.)
which would save about 15K-20K from your "customu SYSTEM d'isk. When you want
to do a directory, you would only need to type:

SYSLIB(DIR) :2 {A,I)

to achieve the same result as if you had typed DIR :2 (A,I) on a regular
SYSTEM disk. AlbeH you could have named your user library, 11 S11 and save the
entering of five characters each time you wanted to execute a member of the
library. That would let you use "S(DIR)"!

Okay, what capabilities are
command is itse 1f a Part it l oned
following functions:

included
Data Set.

with PDS and PRO-PaDS? The
Members provided impfoment

PDS
the

APPEND •·· Appends a ne"i<1 member £)r members to the existing POS and
updates the member directory and map tables accordingly. Executable program
members ma_y have more than one entry pt1'l nt wht~n appi::nded wi i th the MAP
par arne ter.

BUILD - Provides the capability of creating a new partitioned data
set with a user designated maximum number of members. The PDS is composed of
,, Front End Loader pro9ram, a MEMBER dir1:;ctory, and an ISAM dfrectory MAP
table. Members are a.dded via the POS(APPEND) command.

COPY - Transfers an image of a POS member from the PDS to a
designated file. The member will not be deleted from the PDS.

DIR - Provides a directory of members listing the member name,
member type, date of addition, and file space occupied.

KILL - Makes a member inaccessible for access.

LIST - Will list a specific member in standard hex format or
ASCII format.

PURGE - Removes killed member(s) from the PDS and compresses the
file to reclaim the space previously occupied by the killed member(s).

RESTORE - Restores a killed file to accessibility.

General Info - PDS Library
- 4 -

Partitioned Data Set Utility

COMMAND ENTRY

The complete file specification for use with PDS files is:

FILENAME/EXT.PASSWORD:DRIVE(MEMBERSPEC)

**
* '* * A word of caution. The MEMBER specification is valid only when *
* used with a PDS command. You cannot provide the memberspec in *
* a file specification used with LOOS commands not specifically *
* designed to function with Partitioned Data Set files. Use the *
* the memberspec only with the PDS command library! *
* *
** !;':,

Any PDS executable program member may, of course, be executed directly
at "DOS Ready" or via the RUN library command as well as from LBASIC's
CMD"command" in Version 5 or BASIC' s SYSTEM 11 command 11 in Version 6. When
entering a PDS file specification for execution, . any MEMBER name can be
shortened to its minimum length necessary to uniquely match up with the
member directory. For example, each PDS library command begins with a
distinct letter of the alphabet; therefore, all PDS library commands can be
abbreviated to a single character and still retain their uniqueness. If two
members were named COPY and CREATE, then the minimum length necessary to
uniquely identify either would be a length of two [CO, CR].

Where member names are used within PDS commands, such as PDS(KILL), or
PDS(COPY), then the entire memberspec must be entered. The command line entry
abbreviation was chosen to minimize keystrokes where member names are
frequently entered. The full memberspec is required within PDS commands to
maintain maximum integrity of the PDS file and associated maintenance
functions. Remember, a PDS may contain many members. Therefore, additional
measures of protection are vital to ensure the integrity of the file.

General Info - PDS Library
- 5 -

Partitioned Data Set Utility

PROCEDURES TO CREATE A PDS
==========================

The creation of a Partitioned Data Set is an easy task. To begin with,
you should ask yourself what is it to be used for? Perhaps a collection of
scores of utility programs - all combined into one larger file. A larger file
will undoubtably save disk space since small files will always use at least
one granule of space [1.25K in 5-1/4"·SDEN, 1.5K in 5-1/4" ODEN, 4K in 5-1/4"
rigid, ••.]. Members of a PDS use only that amount of space necessary to
contain each member. The entire PDS file uses space rounded to integral
granules. So it makes good sense to concatenate your small /CMD files into
one or more PDS files. How many will you want to store? Use that estimate,
plus a few extra to handle those you forgot about, as the MEMBERS parameter
in the PDS(BUILD) command to initialize a new file for use as a Partitioned
Data Set.

Second, concatenate the /CMD files by using the PDS(APPEND) command. You
could, of course, build a MAP file listing each addition to be made and use
the MAP option of APPEND to streamline the process. Or use JCL to
PDS(APPEND)! Then use the PDS - it's simple to deal with.

Perhaps you would really like to be able to store a large number of
small data files on a disk. Assume that you are using your machine for word
processing in an environment where it is important to catalog letter files.
Letters typically waste two to four sectors of storage space because file
allocations are always made in granules. That can mean 500 to 1000 characters
of storage space lost for each letter which can use up disk space fast.
PDS{BUILD) a Partitioned Data Set to store 50-100 letters - each having a
unique eight-character member name with their own mini-directory. The PDS
file name can then become another field for use in cataloging the letters.
PDS{BUILD) a couple of PDS "letter" files for specific categories. Then a
convention can be established for the member names that will assist in
denoting their contents. Remember, the PDS(DIR) command produces a sorted
directory to aid you. You will also be optimizing the storage space available
on your "letter" disks providing storage space for more letters per diskette.

The following example will illustrate the steps required to initialize a
ten-member Partitioned Data Set and concatenate five members - four of which
are executable programs and one of which is a pure text documentation file.

PDS(BUILD) ULIB:2 (M=lO)
PDS(APPEND) DSMBLR ULIB.PDS:2
PDS(APPEN) XREF ULIB.PDS:2
PDS(APPE) PARMDIR ULIB.PDS:2
PDS(APP) CONVCPM ULIB.PDS:2
PDS(A) NOTE/SCR:3 ULIB.PDS:2

;Creates the 10-member PDS
;Appends DSMBLR/CMD
;Appends XREF/CMD
;Appends PARMDIR/CMD
;Appends CONVCPM/CMD
;Appends NOTE/SCR

Note that the member name, APPEND, can be abbreviated to as few a quantity of
characters that still keep its name unique amongst all the members in the
PDS! The example illustrated this convenience by denoting various acceptable
forms for entering the member name. You can now execute DSMBLR, for instance,
by entering:

ULIB(D) or ULIB(DS) or ULIB(DSM) or ULIB(D

General Info - PDS Library
- 6 -

Partitioned Data Set Utility

The closing parenthesis following the member name is required only when
additional information is entered on the command line. Again note that the
member name, DSMBLR, can be abbreviated to a single character because no
other member name starts with the letter 11 D11 •

PATCH TO SYSO/SYS (5.0.2 & 5.0.3)
--

If you are going to use PDS with LOOS Model I Version 5.0.2 or Version
5.0.3, the following patch must be implemented prior to using the PDS
utility. DO NOT APPLY THIS PATCH TO ANY OTHER VERSION OF LOOS •

• SYSOPDSA/FIX - 12/20/81 - by Roy Soltoff
. This patch is for LOOS 5.0.2 or LOOS 5.0.3 only!
• PATCH SYSO/SYS.WOLVES
.
DOC,35=11 FF 42 CD OA 40 DD El C9
• WAS CD 07 40 DD El C9 11 FF 42
• End of patch

General Info - POS Library
- 7 -

Partitioned Data Set Utility

PDS(APPEND)
===========

This PDS library command is used to add new members to an existing
Partitioned Data Set (PDS). The syntax is:

==-

PDS(APPEND) filespecl filespec2 (MAP,DATA)
PDS(A) filespecl filespec2 (MAP,OATA)

filespecl Is the file you wish to add as a MEMBER, or
is the name of a MAP file which contains the
the filespecs of the files to add.

filespec2 Is the PDS file to receive the MEMBER.

MAP Indicates that filespecl is a MAP file.

DATA Forces the added MEMBER to be interpreted as
a data file [in lieu of a program file].

abbr: MAP=M, DATA=D

--
The APPEND command can be used to add either one or more members to the

PDS identified as "filespec2". Members may be executable programs [ICMD type
files] or data files [anything which is not a /CMD type file]. Any appending
file with a file extension of 11 /CMD" which has as its first byte either an
X1 0l 1 or an X1 05 1 and has as its fourth from last byte an X1 02 1 will be
interpreted as an executable program file unless overridden by the DATA
parameter. Any appending file not so identified will be interpreted as a data
file. Since executable program files have the X1 02 1 byte changed to an X1 04 1

when stored in the partioned data set, the DATA parm is supplied to restrict
PDS(APPEND) from treating a data file, which matches the program file
specification, as a program file. It should be quite rare to discover a data
file which matches the executable program parameters.

You may discover that some /CMD files in your possession may not have a
proper end-of-file value in the directory. You can ascertain if a file is
properly registered in a directory by listing the file in hex with the DOS's
LIST command. A properly generated /CMD file will end in 1102 02 TL TH", where
TL and TH are the low order and high order bytes of the module's transfer
address. If you PDS(APPEND) a /CMD file that is improperly registered, it
wi 11 be assumed to be a data file. Thus, an attempt to execute it from the
PDS would result in a "load file format error• message from LOOS. In order to
correct such a file, you can use a utility that reads a load module file
until the transfer address record while it writes out to another file only
that portion read. The CMDFILE or PROCESS utilities may be used for this
purpose.

A data file member cannot be executed by the operating system. Any
attempt to do so will result in an immediate abort with the "Load module

APPEND - PDS Library
- 8 -

Partitioned Data Set Utility

format error 11 message being issued. Data file members can be catalogued for
archival or other purposes and retrieved by the PDS(COPY) command.

A program member can have one or more entry points, each entry point
identifiable as a distinct MEMBER name. Each entry point will require a
separate PDS directory entry; however, the module is stored only once in the
PDS. If multiple entry points are required, then you must prepare a MAP file
which is used to append the member to the PDS. The MAP file data line
provides the means by which multiple member names and entry points are
identified to the PDS(APPEND) command. It is a good idea to use a file
extension of 11 /MAP" on a MAP data file. The reason will soon become evident.
The format of a MAP file is as follows:

filespecl,memberl,traadrl,member2,traadr2, ...
filespec2,memberl,traadrl,member2,traadr2,member3,traadr3, ...
filespec3,memberl,traadrl, ...

As can be noted, each line contains the information for a single file which
can have one or more member names and transfer addresses. The line is limited
to 63 characters in length. Each line must be terminated with an <ENTER>. The
comma 11 , 11 is used to separate each field on a line. Also, spaces cannot
appear in the line.

The first field specifies the name of the file that is to be loaded.
11 Memberl 11 and "traadrl" is the first member name and its entry point.'
Subsequuent fields identify each member name (another entry to filespec) and
the respective entry point. For example, suppose you had a file called,
MOVE/CMO, which contained two entry points: APPEND at X'5200' and COPY at
X'5203'. The MAP record to append such a file would be:

MOVE,APPEND,5200,COPY,5203

If you are using the PDS file to store assembler libraries and you have
multiple entry points to an assembler source code member, what do you do
about the transfer address? There is no such thing for the source! Well,
since the syntax requires a transfer address, you must enter something;
however, it doesn't matter what is entered - a zero "0" will suffice.

So far, the MAP parameter was used to specify multiple entry points. It
has two other purposes. First, instead of a second or third entry point,
11 member2" could an 11 alias 11 with the same entry point. Thus, the same member
could be accessible via two different names. Second, where you have a large
number of members to add at one time, identifying each entry as a MAP record
and using the "PDS(APPEND) filespec/MAP pdsfilespec (MAP)" method will result
in appending the members more quickly.

Both filespecl and filespec2 will have their file extensions default to
"/CMD". Therefore, if no extension is provided, "/CMD" will be assumed. If
the MAP parameter is entered, then the default file extension for filespecl
will be "/MAP". This guards against inadvertantly appending a MAP file to a
PDS by forgetting to enter the MAP parameter. This is why it was recommended

APPEND - PDS Library
- 9 -

Partitioned Data Set Utility

that 11 /MAPu be used as the file extension for the MAP file.

Example

PDS(APPENO) OSMBLR S.POS:O

will add the progrmn, DSMBLR/CMD, to the "S/CMD.PDS:0" partitioned data set.

Informative Messages

READING PDS MEMBER DIRECTORY •••

This message will be displayed after the PDS file has been opened and
when the PDS member directory is loaded into memory.

READING fi1espec TO APPEND •••

This message will be displayed when the file to be added as a member is
being read into memory.

APPENDING FILE TO PDS •••

This win be displayed when the new member is written to the POS.

UPDATING POS MEMBER DIRECTORY •••

This message will be displayed when the PDS directory is br!ing corri;:,cted
to contain the information on the new member.

MEMBER {m,~mberspec} ADDEO TO PDS.

This messag1~ will be disp1a_yed upon successful comp1etion of the member
addition to the PDS. The member name w'i 11 be shown for 11memberspt~C 11 •

Error Messages

INPUT FILESPEC REQUIRED!

This error indicates that the file specification for the appending file
was. not entered on the command 1ine.

PDS FILESPEC REQUIRED!

This error indicates that the Partitioned Data Set file specification
tvas omittr:::d from the command line.

APPEND - PDS Library
- 10 -

Partitioned Data Set Utility

PARAMETER ERROR!

An error was encountered in one or more parameters passed in the
parameter string.

DESTINATION FILE IS NOT A PDS!

The filespec entered for the PDS did not define a partitioned data set
file. A DOS directory command displays an asterisk adjacent to PDS files.

PDS DIRECTORY IS FULL!

There is no more room in the PDS directory to add another member. Either
start a new PDS or PDS(PURGE) unwanted existing members.

MEMBER {memberspec} ALREADY IN PDS!

The PDS already contains a member with the same name as the appending
file's FILENAME. The new member will not be added.

OUT OF MEMORY - INPUT FILE TOO BIG!

The appending file must be small enough to fit into available memory.
The file is probably too big to be considered useful for membership in a PDS.
You may also have too little memory available due to excessive high-memory
usage (spool buffers, SYSRES modules, filters, etc.).

MAP INPUT FORMAT ERROR!

A syntax error was detected in a line of the MAP file. The offending
line up to the character considered to be in error is displayed. Check your
MAP file for adherance to the documented construct.

MAP INPUT MEMBER NAME ERROR!

Most likely, the member name field was longer than the maximum eight
characters allowed. The offending line up to the erroneous character will be
displayed.

MAP INPUT DECK NAME TOO LONG!

This error will be displayed if the file specification field of the MAP
record contains a file name that exceeds eight characters in length. The
offending line up to the erroneous character will be displayed.

APPEND - PDS Library
- 11 -

Partitioned Data Set Utility

POS(BUILO)
----------....... ,.. ________ ,

This PDS library command is used to initialize a file for use as a
partitioned data set. The syntax is:

PDS(BUILD) filespec (MEMBERS•ddd,LOAOER="filespec")
PDS(B) filespec (MEMBERS=ddd,LOADER~"filespec")

I
I

filespec
i

Is the partitioned data set to be initialized. !
It will be created if non existing. I

MEMBERS

LOADER

Is the directory size in members. The PDS will
be created with a size o~16 if omitted. The
parameter value must be in the range <1-255>.

Is used to initialize the PDS with a Front End
Loader (FEL) module other than the standard
FEL supplied with the PDS utility.

Abbr: MEMBERS=M [PRO-PaOS accepts LOADER=LJ

I
I
I
l
I
I
l
I
!
I
I

====-~--======-=~==========:=-==~====~~=============-===· =~ ==

The PDS03UILD) command must be used to 'initialize a partitioned data set
prior to adding the first member with the PDSUI.PPENO) command. ff 11 fi lespec'"
is an existing PDS file and the password is included, it will be overwritten
with a.n empty d ·i rectory. l:.. Front End Loader program as ~1e 1 l as empty MEMBER
and ISAM tables constituting the directory, are used to initialize the file
for use as a partitioned data set.

A PDS is an extremely important file since it can contain up to 255
members and i::2.ch member is ·itself a ·f-ile. It is i::.ssentia1, therefore, that
you do not inadvertantly kill, write to, or copy to a partitioned data set.
In fact, the only time writing should be done to a PDS is during a member
addlt·ion via the PDS(APPEND) command and certain other PDS commands. For this
reason, BUILD will automatically assign password protection to a Partitioned
Data Set during the building process by invoking the DOS ATTRIB command. The
following attributes will be assigned:

-----LOOS Version 5----
UPDATE PASSWORD: PDS
ACCESS PASSWORD: blanks

PROTECTION LEVEL: READ

-----LDOS Version 6-----
0WNER Passwor : PDS

USER Password: blanks
Protection Level: READ

You may change the password to one of your selection by using the system
ATTRIB command after the PDS is built. It is strongly suggested that you NOT
remove the protection so as to avoid inadvertant destruction of the PDS.
Remember, most of the accesses to a Partitioned Data Set will be in a READ
mode and will not require entry of the password. The password would only be
needed to append a member, KILL a member, PURGE all Killed members, rename
the entire PDS, or KILL/REMOVE the entire PDS.

BUILD - PDS Library
- 12 -

Partitioned Data Set Utility

A Partitioned Data Set can contain a maximum of 255 members - the
maximum sized directory. The maximum size is defined at initialization. If
you do not enter a MEMBERS parameter, a value of 16 directory slots will be
provided. A directory size chosen should depend on your drive capacity and
file sizes to be included as members.

In order to provide automatic execution of an executable program file
member, a Front End Loader (FEL) program is required in every Partitioned
Data Set. A standard FEL is supplied within the PDS(BUILD) library command
that supports the execution of program members as identified in this
document. It is automatically used unless overridden by the LOADER parameter
for custom PDS implementations. Use of the LOADER parameter will result in
the prompting of the loader file specification. If desired, the loader file
specification may be entered with the parameter word in the format:

u. ..

LOADER="filespec"

If the file specification is not entered with the parameter,
prompted for. It is beyond the scope of this documentation
technical information concerning Front End Loaders.

Informative Messages

WHAT IS THE NAME OF YOUR LOADER?>

it wi 11 be
to provide

This. prompt message will be displayed if you enter the LOADER parameter
without specifying the file specification in the command line. Enter the
filespec in response to the prompt.

PDS FILE GENERATION COMPLETE

This message indicates successful completion of the PDS initialization.

Error Messages

PDS FILE SPECIFICATION REQUIRED!

This error indicates that the Partitioned Data Set filespec was omitted
from the command line.

PARAMETER ERROR!

An error was encountered in one or more parameters passed in the
parameter string.

MANUAL BREAK ABORT!

The BREAK key was depressed in response to a request for the loader
filespec. The BUILD process terminates.

BUILD - PDS Library
- 13 -

Partitioned Data Set Utility

PDS(COPY)

This POS l'ibrary command wi 11 copy a MEMBER from a partitioned data .set
(PDS) to a standard type fi"le. It can be used to retrieve archived member
data files. The syntax is:

========-·==r- ·====-=-==-=~=====--====--=-===---- ----- ------

POS(COPY) filespecl(memberspec) filespec2
PDS(C) filespecl(memberspec) filespec2

There are no parameters

== ==-======::===··===========-=-===-=======------------------
This command wi 11 transfer the image of a member identified as

"memberspec" from the partitioned data set identified as "filespecl" to a
fi1e identified as 11 filespec2 11 • Both fi lespecs will be assumed to have a fi"le
extension of 11 /CMD" unless one is provided.

If the member being copied was an executable program having multiple
entry points, the transfer address provided for the destination file will be
the entry point of the member name previded ·in the command 1 ine.

Example

POS(COPY) MYLIB:5(EOAS) EDAS:1

w-111 copy the member, EDAS, from the partitioned data set, MYLIB/CMD:5, to a
file named EDAS/CMO:l

Informative Messages

COPYING MEMBER memberspec TO FILESPEC

This message will be displayed while the member is being copied.

COPY FUNCTION COMPLETE

This message will be displayed at the conclusion of the copy process.

Error Messages

PDS FILESPEC REQUIRED!

This error indicates that the Partitioned Data Set filespec was omitted
from the command line.

COPY - POS Library
- 14 -

Partitioned Data Set Utility

PDS MEMBER REQUIRED!

The memberspec was omitted from the PDS file specification.

MEMBER NAME ERROR!

Most likely the memberspec exceeded the eight-character maximum length.

SOURCE FILE IS NOT A PDS!

The file identified by the PDS file specification is NOT a partitioned
data set.

MEMBER NOT IN PDS DIRECTORY!

The member identified in the PDS file specification was not found in the
PDS directory.

DESTINATION SPEC REQUIRED!

A file specification satisfying the destination file was omitted from
the command line.

OUT OF MEMORY - MEMBER FILE TOO BIG!

The member fi1e must be small enough to fit into available memory. Since
sufficient memory was available to add the member to the PDS, you may have
too little memory currently available due to excessive high-memory usage
(spool buffers, SYSRES modules, filters, etc.).

COPY - PDS library
- 15 -

Partitioned Data Set Utility

PDS(DIR)

This PDS library command is used to obtafo a directory of partitioned
data set MEMBERS. The syntax is:

---------- --- ---- ------------------------------ ----------
POS{DIR) filespec (KtP)
PDS{D) filespec (K,PJ

filespec Is the POS file whose directory is listed.

K Is entered to 1-ist the member names of killed
members in addition to the active members.

P Is entered to simultaneously direct the output to
the .,;:pf{ device.

,_.,,,._. ~---•• .. ~• --.. -~,••--" •~i"~•••••• •----•-•---_,.,_,_.,;:oe<,_, ____,,;~---~--•• •--~~ •-•-,S. ... ,•~-••AA•,., •,.,_ •, __ , ___ ~

The PDS(DIR) co11w1and will provide an alphabetized listing of a.11 active
and killed members in a POS. In addHion to the member name, the 'listin9 1;1il1
show either a 11 P11 or "D 11 to ·indicate a program or data file member, the date
that the member was added to the PDS, and the length of the member in bytes.
If the "K" parameter is entered, then killed members will be listed and noted
by the presence of an asterisk followfog the member name., l\11 active members
will be listed first followed by the killed members.

Example

PDS(DIR) PDS

PDS: PDS/CMD 08/11/83 s·ize: 9K Members:
append p 15-Mar-83 1703 build p 15--Mar-83
copy p 15--Mar-83 1041 dir p 15-Mar-83
k i 11 p 15-Mar-83 551 list p 15-Mar-83
purge p 15--Mar-83 1464 restore p 15-Mar-83

Informative Messages

There are no informative mesages other than the listing.

DIR - PDS Library
- 16 -

8/ 10
1100
1288
1042

601

Partitioned Data Set Utility

Error Messages

PDS FILE SPECIFICATION REQUIRED!

This error indicates that the Partitioned Data Set file specification
was omitted from the command line.

PARAMETER ERROR!

An error was encountered in one or more parameters passed in the
parameter string.

FILE IS NOT A PDS!

The file specification entered for th~'PDS did not define a partitioned
data set file.

DIR - PDS Library
- 17 -

Partitioned Data Set Utility

PDS(KILL)

This PDS library comnand is used to remove a PDS member from the PDS
directory. The member is left intact until purged. The syntax is:

---- -------~-~ -- -· --------- -----------------------------
PDS(KILL) filespec(membername)
PDS(K) filespec(membername)

no parameters are required

----- ------- -~-- -- ----- ---------------------------------
This command can be used to remove a member from the PDS directory.

Mernbers that are killed cannot be executed, listed, copied or otherwise
accessed. Killed members will also not appear in a directory listing unless
the "K" parameter is provided. A killed member is denoted in the directory by
having the n~mber name's first character high-order bit set to a one. Killed
members may be r(~stored to active status with the PDS(RESTORE) command unless
the member has been purged.

Example

PDS{KILL) MYLIB.POS:l(JUNKFILE)

will make inactive the member, JUNKFILE, in the Partitioned Data Set,
MYUB/CMD .PUS: 1.

Informative Messages

KILL FUNCTION COMPLETE.

This is displayed upon successful completion of the PDS(KILL) function.

Error Messages

PDS FILESPEC REQUIRED!

This error indicates that the Partitioned Data Set file specification
was omitted from the command line.

PDS MEMBER REQUIRED!

The member specification was omitted from the PDS file specification.

KILL - PDS Library
- 18 -

Partitioned Data Set Utility

MEMBER NAME ERROR!

Most likely the memberspec exceeded the eight-character maximum length.

SOURCE FILE IS NOT A PDS!

The file identified by the PDS file specification is NOT a partitioned
data set.

MEMBER NOT IN PDS DIRECTORY!

The member identified in the PDS file specification was not found in the
PDS directory.

KILL - PDS Library
- 19 -

Partitioned Data Set Utility

POS(LIST)

This PDS library command can be used to dispLw a Partitioned Data Set
MEMBER in either ASCII mode or HEX mode in a manner similar to the system's
LIST command. The syntax is:

----------·----------· -------- ------- ~- ------------ ------

PDS(LIST) filespec(memberspec) (ASCII,PRINT)
POS(L) filespec(memberspec) (ASCII,PRINT)

fi1espec(memberspec) Is the PDS member to be listed.

ASCII

PRINT

Indicates an ASCII listing is desired.

Denotes that the output is to simultaneously
be directed to the *PR device.

INT=P

A Partitioned Data Set MEMBER can be lis
*PR device by using this PDS library command.
standard HEX display unless the paramet<.::>r,

to the *DO device and
The listing 11 normally be in
"ASCII 11 , is entered. The ASCII

display 11 not be line numbered.

The listing is normally presented to the *DO device. If you want to
direct t ou t to a line printer, the PRINT parameter can be entered.

During the listing, depression of the BREAK key will abort the operation
and return you the "DOS Ready" prompt. The PAUSE key [usually activated by
simultaneous depression of the SHIFT and@ keys] will temporarily suspend the
listing. Depression of any other key will resume the listing.

Example

PDS(LIST) LETTERS/SCR:5(Ll221005) (A)

will list the member, Ll221005, from the LETTERS/SCR:5 Partitioned Data Set.
The 1isting wi11 be in ASCII.

Informative Messages

There are no informative messages.

LIST - PDS library
- 20 -

Partitioned Data Set Utility

Error Messages

PDS FILESPEC REQUIRED!

This error indicates that the Partitioned Data Set file specification
was omitted from the command line.

PARAMETER ERROR!

An error was encountered in one or more parameters passed in the
parameter string.

PDS MEMBER REQUIRED!

The member specification was omitted from the PDS file specification.

MEMBER NAME ERROR!

Most likely the memberspec exceeded the eight-character maximum length.

SOURCE FILE IS NOT A PDS!

The file identified by the PDS file specification is NOT a partitioned
data set.

MEMBER NOT IN POS DIRECTORY!

The member identified in the PDS file specification was not found in the
POS directory.

LIST - POS Library
- 21 -

Partitioned Data Set Utility

POS(PURGE)
--~--....,.---------·-------

The PDS PURGE library command will physically remove killed members from
a Partitioned Data Set. The storage space occupied by the purged members wi 11
be reclaimed. The syntax is:

===~===-=======================-====-======-=----------------

POS(PURGE) filespec (QUERY=N)
PDS(P) filespec (Q=N)

filespec Is the PDS file to purge.

QUERY~N Indicates that all killed members are to be
purged without prompting.

Abbr: QUERY=Q

===-= - =-===~z-=========--== ==---=-===-=-:=----------~-----
Th·is PDS library command is used to eliminate space in a Partitioned

Data Set occupied by 11 killed 11 members. The member name, type of member, and
append date of each killed member will be identified to confirm its purge.
You thus have the opportunity to selectively purgi: killed members. If the
parameter, 11 QUERY=N 11 , is entered, then a11 killed members will be purged
without the display of prompting messages.

Purging is a mu1ti-step process. In the first step, the name of each
killed member is displayed. You have the option of entering "Y" purge it,
or 11 N11 to not pu it. If you enter a BREAK, the purge process wi 11 abort.

In the second step, a member 1Ni11 be purged by bubbling up all members
in the PDS that follow the killed member in storage. This will overwrite the
killed member with successively stored members. The directory will be updated
to reflect the revised pointers to a1l bubbled up members. The process will
be repeated for 1 members requested to be purged. Since it is possible by
using MAP appending to have multiple entry points to a member (it results in
more than one member name for a physical member), the PDS(PURGE) process wi11
automatically purge all entry points to a PDS member regardless if they are
all killed or not. Therefore, it is not necessary for you to kill all the
member entry names to a member in order to purge it. It also causes no harm
if more than one member name of a multiple entry member is killed. All member
names that are purged w·ill be displayed.

In the final step. the PDS directory is written back to the PDS and the
system directory is updated.

The larger the PDS, the greater the disk I/0 needed to accomplish the
purge operation. If your system frequently has disk errors, you may want to
avoid purging ki"I led members. It is recommended that you make a copy of the
PDS prior to the purge operation in case of error. Purging is not absolutely
essential. The same process could be achieved by a series of POS(COPY) and

PURGE - PDS Library
- 22 -

Partitioned Data Set Utility

PDS(APPEND) commands by transferring active members to a new Partitioned Data
Set.

Informative Messages

READING PDS MEMBER DIRECTORY •••

This message will be displayed after the PDS file has been opened and
when the PDS member directory is loaded into memory.

PURGE MEMBER: memberspec P/D date?

This message will be displayed for each killed member in the PDS
(assuming Q=Y). Answer Y or N.

BEGIN PURGING <Y,N>? >

This is the last message displayed before file I/0 commences. If you
want to abort the purge, this is your last chance.

MEMBER {memberspec} PURGED FROM PDS.

This will be displayed after a member is purged and the PDS directory is
updated in memory. The PDS directory has not yet been written to the disk.

UPDATING PDS MEMBER DIRECTORY ••.

This message will be displayed when the PDS directory is being corrected
on disk to contain the revised directory information.

Error Messages

POS FILESPEC REQUIRED!

This error indicates that the Partitioned Data Set file specification
was omitted from the command line.

PARAMETER ERROR!

An error was encountered in one or more parameters passed in the
parameter string.

FILE IS NOT A PDS!

The file specification entered for the PDS did not define a partitioned
data set file.

PURGE - POS Library
- 23 -

Partitioned Data Set Utility

PURGE ABORTED!

The BREAK key was depressed in response to informative messages which
required an entry. The PURGE process terminates.

NOTHING TO PURGE!

Either the file contained no killed members or none of the displayed
killed members were requested to be purged.

UNEXPECTED ERROR - {memberspec}: RECOVERY BEING ATTEMPTED!

What can be said? Any number of conditions could cause this error
message. Any file positioning error prior to a new I/0 sequence will abort
the purge and proceed to write the PDS directory back to the disk - hopefully
maintaining a usable PDS. Also, an error detected in the PDS directory
records will also produce this error mess • Any d·isk 1/0 error wi11 abort
the purge with the PDS file 1 s integrity in eopardy. This is the most serious
message to obtain. A backed up copy of your PDS is your insurance.

PURGE - PDS Library
- 24 -

Partitioned Data Set Utility

PDS{RESTORE)

This PDS command will restore a killed member that has not been purged.
The syntax is:

--
PDS{RESTORE) filespec(memberspec)
PDS{R) filespec(memberspec)

filespec(memberspec) Is the PDS member to be restored.

There are no parameters

--
This PDS library command will restore a member that has been killed from

a Partitioned Data Set. If the member had been purged, no amount of
11 restoral 11 will reclaim the member.

Example

PDS(R) MYLIB(IGOOFED)

will restore the member, !GOOFED, in the Partitioned Data Set designated as
11 MYLIB/CMD 11 •

Informative Messages

RESTORE FUNCTION COMPLETE.

This will be displayed upon successful restoral of the member and its
return to active status.

Error Messages

PDS FILE SPECIFICATION REQUIRED!

This error indicates that the Partitioned Data Set file specification
was omitted from the command line.

PDS MEMBER REQUIRED!

The member specification was omitted from the PDS file specification.

RESTORE - PDS Library
- 25 -

Partitioned Data Set Utility

MEMBER NAME ERROR!

Most likely the memberspec exceeded the eight-character maximum length.

SOURCE FILE IS NOT A PDS!

The file identified by the PDS file specification is NOT a partitioned
data set.

MEMBER NOT IN PDS DIRECTORY!

The member identified in the PDS file specification was not found in the
PDS directory.

MEMBER IS NOT KILLED!

The member you requested to have restored was not a "killed" member.

RESTORE - PDS Library
- 26 -

E E P I I Y s E B MANUAL

Table of the Contents

FED II Overview •••••••••••••••••••••••••••• page 1

Entering FED II ••••••.••••••••••••••••••••• page 2

FED II Displays •••••••••••••••••••••••••••• page 3

Command Listing •••••••••••••••..••.•.•••••• page 4

Cursor Movement .••••••.•••...•••..•••••..•. page 5

Record Manipulation •••••••••••••••••••••••• page 6

Record Modification •••••••••••••••••••••••• page 7

Control Commands ••••••••••••••••••••••••••• page 8

Output Commands ••••••••••••••..•...••.••••. page 8

Search Commands ..•.••.•...•.....•....•..••• page 9

Load Module Commands ••••••••••••••••••••••• page 10

Di s.k Mode •• .••••••••••••••••••••••••••••••• page 11

Examples of FED II usage •.•..••.••.•••••..• page 12

Disk 1/0 Errors •••••••••••••••••••••••••••• page 14

FED II Load Errors ••••••••••••••••••••••••• page 14

WARRANTY INFORMATION page 15

Appendix One (Load Module Format) •••••••••• page 16

Appendix Two (Disk & File Structure) ••••••• page 19

FED II User Manual
Copyright O 1983 By Logical Systems, Incorporated

All Rights Reserved

FED II version 5.1
Copyright O 1983 By Logical Systems, Incorporated

All Rights Reserved

FED II version 6.0
Copyright O 1983 By Logical Systems, Incorporated

All Rights Reserved

.

E E P I I - I H E b P P § E 1 b E EPJIPB
Utility Overview

FED I I al 1 ows the user to access a disk file to display, disassemble, and edit that
f 11 e. It is a screen-oriented File EDitor to be used with an LOOS compatible operating
system. Its wide range of capabilities make it an excellent tool for the advanced user.
Its simplicity makes it easy to use for the novice.

FED II's main features are as follows:

1) Substitution editing capabilities are supported. The user can easily
position to any byte in any given record. Hexadecimal and ASCII
modification are available. Direct disk patching becomes a simple matter
with FED II. Small changes in files can be made quickly. With FED II,
there is no need to reassemble large source files merely to change one
byte.

2) FED II allows record advance, backspace, and absolute positioning. Paging
back and forth through the file is accomplished at a keystroke. The user
does not need to know any diskette information (such as density, number of
sides, number of sectors per gran, etc.). The required information
necessary to start FED II is the file name.

3) ASCII, literal text or hex string searches are easily performed. A repeat
command exists to position to subsequent occurrences of the same string.
FED I I searches the entire file, not just the current record. It searches
for text or ASCII strings up to 16 characters in length. Searching for Hex
strings of up to 6 bytes 1n length is supported.

4) Mapping of machine 1 anguage (ICMD) files with loader code blocking and
Z-8(/J disassembly is available for LOOS load module format files. The user
can page through each load block (forward or backward), or position to the
byte in the file which loads at a specific address. It is also possible to
position to the next Z-8(/J instruction or position to the address
referenced by the current instruction. These features allow the user to
step through and examine machine language routines within a file. Direct
patches are made quickly and easily.

5) Complete listing of a file, individual records, and disassembly output of
load module files to a printer are supported.

6) FED II includes a standard 256 byte display mode, and FED II 6.0 includes
a display for files with record lengths other than 256. Under 5.1, a
screen mode is available to display additional information not available
in the 256 byte display mode due to lack of video space.

7) A Disk Mode is also available to work with an entire disk (at the
cylinder/sector level).

I nformat 1 on on disk organization, file structure, and load module format files can be
found in the Appendix of this manual.

Throughout this manual, a character or word between vertical bars is used to represent
a keyboard key. Thus the symbol, IENTERI, refers to the keyboard key marked ENTER and
not a five letter word. IPI means the 11 P11 key etc.

FED II User Manual
5.1 and 6.0 versions

Page - 1

~.!ffER ING FED II

To enter FED II simply type

FEDI I I ENTER I
or

, LSFEDII I ENTER I
ilt the DOS Rei!dy prompt. If a 1 oad error occurs, refer to the FED II Load Errors
section. Once FED II has loaded, a prompt will appear for the filespec. Answer this
prompt by giving the filespec or drive you wish to examine/mod-lfy. The filespec must be
entered using the following syntax:

*Filename/ext.password:drhespec. lrl !ENTER I

Note: The leading asterisk is an optional parameter {normally not used) which is
explained later. The LRL parameter is available only under FED II 6.0

l he filename may consist of up to 8 a1phanumer"ic characters, the first of which must
be alphabetic. All f11especs must contain at least the filename. The extension may
consist of up to 3 alphanumeric characters. Like filenames, the first character must be
alphabetic. The extension is optional. The default extension for all filespecs is
/CMD, To enter a file which has no extension, follow the filename with a slash 11 / 11 •

The optional password has the same form as a filename,. The password is necessary only
if the protection level is EXEC or higher. If the file has READ access, then FED II
wi11 not allow writing to the file unless the update/owner password was given. The
d.r I vespec is a co 1 on fo 11 owed by a number between 0 and 7 which is a working drive
number. This is an optional field. If no drivespec is entered, all active drives in the
system wi ! l be searched for the filespec. The first match found wi 11 be used. If the
drivespec is used by itself, the entire disk will be treated as a file (see Disk
Mode). LRL is a number ranging from 1 through 256. Like the drivespec, the LRL is
optional. If no LRL is specified, the default value will be 256. To exit FED II at this
point rather than entering a filespec. press the IBREAKI key, and control will return
to the DOS level. If an illegal or improper filespec is given, the appropriate error
messdge will appear. and the filespec prompt will re-display,.

H(:xadecimal riotat·ion (X 1 nn 1) will be used to represent the current record number and
relative byte number. After a valid ftlespec has been given, record X'0000' will appear
on the screen, and be resident in the "edit buffer". The term Hedit buffer" will refer
to the n~cord of the file currently in the computer's memory which is simultaneously
being displayed. The edit buffer (also referred to as current record) will contain one
record 0-256 b_ytf~S) at any given time. There will be two cursors flashing within the
record (one cursor will be in the "ASCII 11 portion of the screen, the other cursor will
he in the "Hex" display portion). Upon initia1iy accessing a file. these cursors will
be positioned over relative byte X'01' of record X'0000'. Throughout this
documentation. the term "relative byte 11 will be used, and will indicate the byte number
(X'00'-X'FF') relative to the beginning of the current record.

There 1<1i 1 l be an input cursor located on the lower portion of the screen following the
message "Command". This will be referred to as the "command buffer", and wi11 be used
to pass commands to FED II.

Additional Information shown on the screen will be the current record number, filespec,
relative byte within the sector, etc. The following sample displays show where this
information will be presented.

l t is advised that when using FED II, the !BREAK I key shou1d always remain enabled. The
!BREAK! key is necessary to abort any operation and to terminate others.

FED II User Manual
5.1 and 6.~ versions

Page - 2

Under FED I I 5 .1, there are two display modes: a full 256 byte mode and a 128 byte
window mode.

FED II 5.1 (128 Byte Display Mode)

0123456789ABCDEF BYTE 0001 0203 0405 0607 0809 0A0B 0C00 0E0F

•• FED •• Copyr1 <00> 0506 4645 4420 2020 1Fl7 436F 7079 7269
ght 1981-3 by LS <10> 6768 7420 3139 3831 2033 2062 7920 4C53
I ••• Y*.e •••• ew •• <20> 4901 0206 592A 0365 7EC9 2A03 6577 C08D
h .• h •• h.00102030 <30> 68CD 0068 C019 68C9 3030 3130 3230 3330
405060708090A080 <40> 3430 3530 3630 3730 3830 3930 4130 4230
C0O0E0F0 <50> 4330 4430 4530 4630 2020 2020 2020 2020

<60> 2020 2020 2020 2020 2020 2020 2020 2020
<70> 2020 2020 2020 2020 2020 2020 2020 2020

Record X10000 1 Byte X1 2A 1 => X1 2A 1 = 0010 1010 = 42

Load Address• X159D8 1 LO HL,(6503H)

FED51/CMD:0 Command:

FED II 5.1 (256 byte mode)

•• FED •• Copyri I 00> 0506 4645 4420 2020 1Fl7 436F 7079 7269l0IF
ght 1981-3 by LSI 10> 6768 7420 3139 3831 2D33 2062 7920 4C5310IE
I •.• Y*.e •.•• ew •• I 20> 4901 0206 592A 0365 7EC9 2A03 6577 CD8D101D
h •. h .• h.001020301 30> 68CO 0068 CD19 68C9 3030 3130 3230 33301015
405060708090A0B0l 40> 343i 3530 3630 3730 3830 3930 4130 42301 11
C000E0F0 I 5~> 4330 4430 4530 4630 2020 2020 2020 20201 /

I 60> 2020 2020 2020 2020 2020 2020 2020 20201 C
I 70> 2020 2020 2020 2020 2020 2020 2020 20201 M
I 80> 2020 2020 2020 2020 2020 2020 2020 20201 o
I 90> 2020 2020 202~ 2020 2~20 2020 2020 20201 ·
I A0> 2020 2020 2020 2020 2020 2020 2020 20201 0

FED2 - Fil Bl> 2020 2020 2020 2046 4544 3220 2020 46691
le Editor Versiol C0> 6C65 2045 6469 746F 7220 5665 7273 696FI
n 1 •• A .Copyrigl D0> 6E20 312E 0341 2020 0343 6F70 7972 69671

ht 1981-3 by Log! E0> 6874 2031 3938 3120 3320 6279 204C 6F671>2A
ical Systems Incl F0> 6963 616C 2053 7973 7465 6073 2049 6E63IC:

FED II User Manual
5.1 and 6.0 versions

Page - 3

D1s!:!l!~ mode under FED II for 6.~

0123456789ABCDEF BYTE 00 01 02 03 04 05 06 07 00 09 0A 0B 0C 00 0E 0F

... l> •• ,.,{ .. ,. KI <00> I 00 FE 14 01 00 00 28 10 05 C3 08 00 00 00 4B 49 I
••• ,. ... 00. < ~ PR <10> I 07 D0 08 00 00 00 44 4F 06 3C 0E 00 00 00 50 52 I
•••••• SI •••••• SO <20> I 15 08 02 0D 00 00 53 49 17 10 02 0F 00 00 53 4F I
"'*••~~JL~g.= ~-X <30> I 0A 00 00 0A 00 00 4A 4C CD 67 02 3D 20 0C CD 58 I
• "' 9 • w# • • • • a. (~ " 9 • <40> I 02 CD 67 02 77 23 10 F9 18 EE 30 28 0B CD 67 02 I

I 47 CD 67 02 10 FB 18 E0 CD 67 02 47 CD 67 02 6F I G.g •..•.• g.G.g.o <50>
•• g ... g"'"'., ••• tc. <60> I 05 CD 67 02 67 05 C9 D9 2C 20 00 E5 CO 74 43 El I
.{ •••• ,,.,,.Jr- !. <70> I lC 78 06 12 20 02 5F 14 7E 09 C9 01 88 0F 21 98 I
•.• A ... + • .cPV. <80> I 02 7E ED 41 D3 89 2B 05 F2 81 02 C9 63 50 56 08 I
•• ~ ,. ... e <90> I 18 00 18 18 00 09 65 09 00 00 00 00 00 00 00 00 I
............ c,..,i,,-. • ., <AtJ> I 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 I
... ~ .. '" " .. " ... "' . <80> I 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 I
...................... 111.!11 <C0> I 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 I
• "' ff W ,1< lo' Ill fo .,, Ill " Ill '/I' 6 <I, "" <D0> I 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 I
.,,.~1;0,,,i1t1s•lf1i;t:i;i•1• <Eil> I 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 I
"'"'··••111•1"4Jllo"t,tll • ll-'t <F0> I 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 I

BOOT/SYS:0

Command:

!Ai
!Bi
IC 11 ENTER I
! DI I ENTER I
IE I
!Fl

IAI
IHI
!Tl
IL l

!GI
IHI
I II
!JI
!L 11 ENTER!
!Ml
I Nil ENTER I
IP I! ENTER I
IR I
I SI i ENTER I
!U I !ENTER I
IX 11 ENTER I
I BREAK I
! ENTER I
I; I I+ l
I - I I" I
I<!
I> l
II I

Record X10000' Byte X1 84 1 => X1 03' = 1101 0011 = 211

Enter ASCII mod'ification mode
Position to the Beginning of the file
Clear record with zeroes
Disassemble file to printer
Position to the End of the file
Enter Find mode and:
find ASCII string
find Hexadecimal string
find Text string
find Load address
Go to the next occurrence of last search
Enter Hex modify mode
Position to next Z-80 Instruction
Jump to current Instruction reference
List disk file to printer
Toggle between 128 and 256 byte display Modes (5.1 only)
Enter a New fiie
Print current record in edit buffer
Position to Record
Save current record in edit buffer
Update file's directory entry
EXit FED II and return to LOOS Ready
Cancel current FED II command
Display FED II instruction set (Menu)
Advance one record in the file
Backup one record in the file
Position to previous load block
Position to next load block
Toggle between Directory entry and HIT position

FED II User Manual
5,1 and 6.~ versions

Page M 4

N O T E

FED II is an advanced utility, giving the user an opportunity to accomplish tasks not
easily performed by other means. FED II can also be a hazard to the inexperienced or
uninformed user. It is strongly recommended that all editing be done on a BACKUP copy
of the original file or disk whenever possible.

1@1 nn

llt arrow!

IRt arrowl

IUp arrow!

IDn arrowl

ISHIFTIIUp arrow!

ISHIFTIIRt arrow!

ISHIFTIILt arrowl

Cursor Movement Corrmands

Position cursor to relative byte X1 nn 1

Move cursor left one byte

Move cursor right one byte

Move cursor up one line

Move cursor down one line

Position cursor to relative byte X100 1 of the current
record

Position cursor to end of the line

Position cursor to start of the line

The @ positioning command requires a hex byte consisting of two hex digits. This may be
any number X'0 1 through X1 FF 1 , however. if a single digit is used (no leading zero}.
the I ENTER I key must be pressed in order to execute the command. This is because the
l@I command expects two digits. If two digits are used, the command will execute
immediately after the second one is typed.

This arrangement is used throughout FED II whenever information must be supplied in
addition to the command key. Merely remember to press !ENTER! if nothing occurs after
typing 1n a command. This is especially true for the strings used in all of the FIND
subcommands.

The arrows may be used from within either the ASCII or Hex modification modes to
position within the buffer. The 11 @" sign will not be accepted during either modify
mode.

The cursor movement commands will not wrap into either a prior or a subsequent record.
To s w i t ch records, use the record man i pu lat ion commands. No cursor movement wil 1 occur
if an attempt to violate buffer boundaries results.

FEO II User Manual
5.1 and 6.0 versions

Page - 5

l+I

1-1

181

IEI

IRfnnnn

ii I

RECORD MANIPULATION COMMANDS; ~!~J.-~
Advance one record sequentially in the file. For example, if the
current record is X'000C'. after pressing !+I, record X'000D'
would be displayed {provided that 1t exists). An 11* 11 will be
displayed adjacent to the record number when positioned to the
last record in a file. Issuing the l+I command will not change the
position of the relative byte cursors, A 11 +11 will be shown in the
command buffer to indicate forward motion in the file.

Back up one record sequentially tn the file. If the current record
is X1 !a087 1 , after pressing 1-1, record X'0086' would be displayed.
Issuing the I - i command does not change the position of the
relative byte cursors. The I~! command will be ignored if it is
issued when record)(10000 1 is being displayed. A 11 - 11 will be shown
in the command buffer to indicate retrograde motion in the file.

Position to t_he beginning of the file (record X10000 1) and
position cursors to relative byte X'00 1 •

Position to the end of the file. An 11 *" will appear adjacent to
the record number, indicating that the record being displayed is
the 1 as t record in the file. If the file has an LRL of 256, then
the relative byte cursors will be positioned on the last byte in
the file which is often referred to as the "End-Of-File offset
byte 11 • (Note that this is not necessarily relative byte X1 FF 1 .)

For LRls other than 256\ the cursors win be positioned at the
1 ast byte in the record. Any modifications made to bytes beyond
the EOF offset byte are usually superfluous.

Position to Record XI mmn 1 , provided record XI nnnn' exists in the
file. If the record does not exist the request will be ignored.
After entering IRI. the prompt Record X1 1 wi11 appear ·in the
command buffer. The ! nput for the record number wi11 be taken
within the sing'le quotes. !1ex dig-Its (0-f) must be entered. Any
other characters win be ignored. IBREAKI will cancel this
command. The user may enter the record number without using the
standard four digit (X 1 nnnn 1) form.at. Simply type in the record
number and press I ENTER 1. For example, if the desired record
number is X'0021 1 , type IRll211l!IENTERI. To position to record
X1 Ql007 1 , type IRll7tlEPHERI. The position of the relative byte
cursors wi 11 remain unchanged after positioning to the new record.

This command either positions from a byte in the HIT (Hash Index
Tab 1 e) to a directory entry or from a directory entry, back to the
HIT. If the cursor is positioned somewhere in the HIT. 1/1 would
reposition to the directory entry corresponding to that HIT
position. If positioned in a directory entry~ 1/1 would reposition
to the byte in the HIT corresponding to that entry. This command
is only applicable while in DIR/SYS (file mode) or in the
directory cylinder (disk rnode). It serves no purpose elsewhere and
does not function in any other file or any other cylinder. For
more information~ consult your OOS manual on DIRECTORY structure.

FED II User Marw a 1
5.1 and 6.J versions

Page - 6

FED II MODIFICATION COMMANDS

IAI Enters the ASCII Modification Mode. In this mode, modifications
can be made directly in ASCII. Any character that can be generated
from the keyboard (with the exceptions of the IBREAK! key and the·
arrow keys) can be directly entered into the edit buffer.
Modifications can be made by positioning the cursor over the bytes
to be changed. After the !Al command is issued, the cursors wi11
become larger and the command buffer will display "ASCII Modify 11 •

(In the 256 mode of 5.1. an 11 A11 will display.) From this point cm,
any characters entered will be taken as modifications to the bytes
in the edit buffer. After a character is entered, the cursors win
position to the next character in the edit buffer. If the cursors
are positioned at the last character in the edit buffer, then no
advance wi 11 occur. The arrow keys may be used to position the
cursor without altering the buffer contents. Any changes made to
the buffer WILL NOT automatically write to the file. In order to
save changes to the file, see the !Slave command. To exit the
ASCII modify mode, press the !BREAK! key.

IHI Enters the Hexadecimal Modification Mode. In this mode,
modifications to bytes in the edit buffer are accomplished by
typing hexadecimal d·igits. After the IHI command is issued, the
cursors wi 11 become larger and the command buffer will display
"Hex Modify 11 (11 H11 in the 256 mode of 5.1). From this point on,
hexadecimal digits (0-F) must be entered to modify bytes hi the
buff er. Note that s i nee a single byte is represented by two hex
digits_ hex modify edits one nibble (half a byte) at a time. The
arrow keys may also be used to position the cursors for additiona·i
editing. To exit the Hex modify mode, press the IBREAKI key. Like
the ASCII Modification Mode, no changes are automatica11y made to
the file. To make the modifications to the file, see the !Slave
command.

IC 11 ENTER I C 1 ears the buff er contents from the cursor position to the end
the buffer by filling it with X100 1 • Some files have erroneous or
random information past the end-of-file offset byte in the last
record. The c 1 ear command can be used to overwrite the remainder
of the buffer with zeros .to facilitate viewing. Again, since none
of the edits perform an automatic write to disk. ISi is necessary
to save the buffer contents.

ISi I ENTER I Save the contents of the current edit buffer to disk. The current
record wi 11 overwrite the contents of the disk record. Although
the changes are made) neither the date nor the mod flag of the
file in the directory record will be changed.

IUI I ENTER I Updates the directory entry of' the current file be1ng edi
mod flag will be set, and the date {if maintained) \+1il1 be
updated. This is norma11y not done by FE:O II even if the file has
been altered via the IS!ave command. Update only works in the file
mode.

FED II User Manual
5.1 and 6.0 ver$ions

Page - 7

FED II Control COlmlands

INI IENTERI Causes a prompt for a new filespec. FED II will clear the screen,
print its sign~on message, and prompt the user for a new filespec
to be edited. Note that strings are saved so that IGI will work on
the new file without re-entering a search criterion.

IXIIENTERI Exit to operating system. Any changes made to the current record
buffer, and not written to disk with the IS I command wi 11 be lost.

IMI Switches between the 128 and 256 byte display modes. This command
only exists in FED II 5.1.

I ENTER I The IE NTER I key is used as a confirmation to complete most
commands that result in significant alteration of the current
record. I ENTER I alone will display a menu containing most of the
FED I I commands, and a brief description of their use. Pressing
I ENTER I at the menu page wil 1 return to the d1 splay mode.

I BREAK I The I BREAK I key is used to abort a FED II command in progress.

ffO II OUTPUT COMMANDS

IPI IENTERI Print the current buffer contents, to a printer. If the printer is
not available, the error message "Printer Not Ready11 will display.
Pressing !ENTER I at the error wi11 attempt to print again.
Pressing I BREAK I will abort the operation. Under LOOS 6.0, other
error messages are possible ·if the printer is routed or linked to
a disk file or a device.

ILi IENTERI Li st the file to a line printer starting with the current record.
The record 1ength must be 256. Since FED II does its own
pagination. it is suggested that no printer filters involved with
line counting be used in conjunction with this command. The
1 is ting wi 11 terminate when the end of the f i 1 e is encountered t or
when I BREAK! is pressed. Error handling works exactly as with the
I PI command.

IDI Output disassembly of a Load Module File starting with the current
instruction to a 1·\ne printer. If the cursor is positioned in
loader codet the first instruction following will be used. The
·1isting will terminate when the end of the load module is
encountered, or when IBREAKI is pressed. Unlike the ILi command,
there is no pagination on the disassembly output. Error handling
is identical to the IPI command.

FED II User Manual
5.1 and 6.0 versions

Page - 8

IFI

IAI

IHI

ITI

ILi

IGI

FED II SEARCH COMMANDS

Enters the FIND mode. A "FIND" prompt will appear in the command
line ("F" in 256 mode in 5.1). A subcommand declaring the type of
search must be entered. After entering the subcommand, an
appropriate prompt will display followed by a blank space in quote
marks. (The letters A, H, T, or L will display in the 256 mode of
5.1). The following are the four FIND sub-commands:

Find ASCII "string". This is a literal search for the exact ASCII
characters entered. "string" is a group of from one to sixteen
ASCII characters. The only ASCII characters that can't be
generated are the IENTERI, IBREAKI and IBACKSPACEI keys. If less
than 16 characters are typed, the IENTERI key must be pressed to
in.itiate the search.

Find Hexadecimal "string". This is a literal search for the exact
hexadecimal bytes entered. 11 str,ing 11 is a group of up to 12 hex
digits (6 bytes). Only the valid hex characters (0-F) will be
accepted.

Find Text "string". This is a search for ASCII characters that
ignores differences in upper or lower case. The same restrictions
which apply to IAI apply to ITI.

Find Load Address X' nnnn'. This is a search for the byte in the
file which loads at memory location X'nnnn'.

Go to the next occurrence of the last searched string or load
address. In order to do the same search again, it is NECESSARY to
use this command. It simply looks for the last item spu:U'..iec:l
again. It also 11 memorizes 11 · the last search criterion as long as
FED II is active. This means that searches through different files
for the same string are possible without re-entry of the string.
The only exception to this is an attempted IFIILI when switching
to a non-load module format file. Obviously the string is useless
in that case. If it is not obvious then read the appendix. If it
is still not obvious just take our word that it makes no sense.

In FED I I 5.1, using the 256 byte mode, searches are limited to 6 characters in length
(3 bytes if Hex) due to screen formatting.

Pressing IBREAKI at any time during the input sequence or actual search, will cause FED
I I to display the record which was current before the search started. Any changes made
to the current edit buffer and not saved will be lost during a search. The IBACKSPACEI
key may be used to correct any mistakes made during input.

During a search, the record number being searched will be displayed. If the string or
load address 1s not found, the appropriate message will be displayed. Control will
return back to the position in the file before the search. Note : A search starts at
the byte following the current position. If the cursor were positioned to relative byte
X'FF' of record X'"012', the search would start at relative byte X'""' of record
X '"013 1 • For load module format files, only data found in object code blocks will be
used in the search. Characters in header, comment, filename or any other blocks will be
ignored. It is also assumed that object code blocks load contiguously in memory. In
order to search a Load Module File and include load blocks, precede the filespec prompt
(the very first thing FED II asks for) with an asterisk(*).

FED II User Manual
5.1 and 6.0 versions

Page - 9

I I I

IJI

I> I I< I

FED II Load Module Connands

Pos 1 ti on to the next Z-80 instruction. For example, if the cursor
is positioned at a CALL instruction, and the III command was used,
the cursors would be positioned 3 bytes after the X'CO' opcode. If
the instruction spans a load block, an additional 4 bytes will be
skipped. Note: Using the I I I command may position to the next
record in the file. If this should happen, any changes made to the
edit buffer wh1ch were not saved will be lost. If the cursor is
positioned in load code, I I I will position to the first valid
instruction found. Note that opcodes out of sequence will be just
as readily disassembled. Make sure the "logic thread" being
followed is the correct one.

Position to Z-80 instruction reference. This command positions to
the address operand of the current instruction. For example, if
the current instruction was a JP 67A9, issuing a IJI would attempt
to position to the byte which would load at address X167A9 1 • If
the address is not located in the file, the error message "Load
Address not Found" wi1 l be displayed. and the original cursor
position will be restored. The IJI command may be used for any
instruction referring to an absolute address or relative branch
(CALL, ,JP, JR, LD, DJNZ), whether conditional or unconditional. If
the cursor is either at the end of the module or with the transfer
address block. a !JI will locate the transfer address. Any address
used by IJI must be a 16 bit address or a JR offset. Branches such
as eight bit loads, JP (HL) or RST wi 11 not work. For example, the
instruction LO A.5 will not attempt to locate X'0005', LO HL,6060
wi 11, however, attempt to locate X16060 1 • Note: any changes made
to the edit buffer prior to using the IJI command will be lost if
the current record is left, unless saved with the ISi command.

Positions the cursors to the next/previous loader block (X'01',
X1 02 1 , X'03 1 , X'05', X107 1 , X'l0', X1 lF 1) of a Load Module File.·
This feature was designed to allow the user to trace through
machine language files quickly. Encountering a X1 02 1 will
term 1 n ate a trace. For more information on 11 Type 11 bytes, refer to
the appendix on LOAD MODULE FORMAT FILES.

FED II User Manual
5.1 and 6.0 versions

Page - 10

DISK MODE

Occasionally it is desirable to work with an entire disk as opposed to a single file.
For this purpose, the FED II disk mode makes it possible to treat the entire disk as a
file. Most of the commands available 1n the file mode are also available in the disk
mode. To enter the disk mode, simply give the drivespec (colon followed by a number
between 0 and 7) at the 11 Filespec: 11 prompt.

Since the entire disk is treated as a file, positioning to specific cylinders and
sectors is accomplished by specifying the record number.

The following commands illustrate the difference. More information may be obtained from
the appendix on disk organization.

IRI ccss

IBI

IEI

l+I

1-1

Position to Record X'ccss 1 on disk. The Record number consists of
the cylinder number (cc) and sector number (ss). For example,
positioning to cylinder X1 34', sector X'05' (record X'3405'),
would be accomplished by typing IRll3ll4ll01151. Pressing IENTERI
following the record number is required only for requests
consisting of less than four digits. To position to Record
X'~30A', type IRll3ll011AIIENTERI. To position to Record X'0004'
type IR 11411 ENTER I •

Position to Beginning of Disk (Cylinder 0, Sector 0). After
issuing a ISi, the current Record number would be X'0000'.

Position to End of Disk. The actual record number would depend on
the type of disk. A single-sided doub'le density 40-track diskette
would have an ending record of X12711 1 (Cylinder X127', Sector
X'll').

Position to next record. If positioned at record X11405 1 ,

(Cylinder X114 1 , Sector X'05'), after pressing l+I. record X11406 1

(Cylinder X'14 1 , Sector X106') would be displayed. If the l+I is
used when positioned at the ending sector number of a cylinder,
sector 0 of the the next cylinder would be displayed. For example,
a double-density, double-sided, five-inch diskette has 36 sectors
per cylinder {numbered from X'00' - X1 23 1). If the current record
is X10223'. after issuing !+I. record X10300' would be displayed.

Position to previous record. If positioned at record X. 11405',
(Cylinder X'14 1 , Sector X105'), after pressing 1-1, record X11404 1

(Cylinder X1 14 1 , Sector X104 1) would be displayed. If the l-1 is
used when positioned at Sector 0 of a cylinder, the ending sec tor
of the previous cylinder would be displayed. For example. one
configuration for a 5 11 hard disk might use one platter for a
logical drive, Each cylinder might contain 64 sectors (numbered
X'IU - X1 3F 1). Issuing a 1-1 when positioned at Record X'5000'
(Cylinder X'50 1 , Sector X'@0') would cause record X'4F3F'
(Cylinder X'4F', Sector X'3F') to be displayed.

FED II User Manual
5.1 and 6.0 versions

Page - 11

Another feature of the DISK MOOE is current file indication. Under 5.1, this is shown
In the 128 bytt~ display mode. When positioned to a sector on a disk which is allocated
to a file, the filespec along with the relative record number is displayed. With this
feature. reconstruction of a damaged directory is possible •

.If FED II attempts to access a disk which it cannot distinguish, the error message
"Can't Log "itt Disk 11 will be displayed. Like other errors, pressing I BREAK I will cancel
the current command, causing the filespec to re-prompt. Pressing IENTERI will indicate
to FED I l that it should use the information in the OCT (Drive Code Table) to access
that disk. If FED II cannot interface properly, it may be necessary to use DEBUG or
another utility to fix the disk.

PRACTICAL EXAMPLES OF FED II' S USE

1) Change the byte which loads at address X'57CE' to an X'C9', in a file named
TEST/CMD on drive 2:

A) To edit the file, at the Filespec prompt type:
TEST:2IENTERI

B) To position to address X1 57CE 1 , type:
IF I IL l57CE

C) To enter hex modify mode, press:
IHI

0) Then type in the change:
C9

E) To exit the hex modify mode. type:
IBREAKi

F) To save the change to disk, type:
ISi IENTERI

G) To exit FED II, type:
IX II ENTER I

Note that in this case, no extension was required to access the file, because
the default extension of /CMD was correct.

2) To nu1 l out record X1 7A' of a data file named ACCOUNTS/DAT which has an
update password of BOSS:

A) To edit the file, at the filespec prompt type:
ACCOUNTS/DAT.BOSSIENTERI

8) To position to record X17A', type:
IRl7AIENTERI

C) To fill the buffer with zeroes, type:
ICI IENTERI

D) To save the changes to disk, type:
ISi IENTERI

EJ To exit FED II, type:
IX! !ENTER I

FED II User Manual
5.1 and 6.~ versions

Page - 12

3) To change the string "Burgers" to 11 Hot Dog" in a file named THEMENU/SCR on
drive 6, after editing a different file:

A) To enter a new file, type:
INIIENTERI

B) To edit the file, type:
THEMENU/SCR:6IENTERI

C) To find the ASCII string
IFIIAIBurgerslENTERI

11 Burgers 11 , type:

D) To enter the ASCII modify mode, type:
IAI IENTERI

E) To change the ASCII string to 11 Hot D09 11 , type:
Hot Dog

F) To exit the ASCII modify mode, type:
IBREAKI

G) To save the changes to disk, type:
ISi IENTERI

H) To exit FED II, type:
IXIIENTERI

4) To find out the name of a file on drive 0 containing the string "JOE OUDP
(in either upper or lower case):

A) To access the disk as a file, enter the drivespec:

B) To find the text string, type:
IFIITIJoe dudelENTERI

C) Under 5.1, enter the 128 byte display mode by typing:
IMI

D) The filename/ext and relative record containing the string will be
displayed at the lower portion of the screen.

5) Find the load address which contains the sequence of bytes X145 1 • X'22', &
X1 77' in a file named HELPME/DCT:

A) To access the file, type:
HELPME/DCTIENTERI

B) To find the hexadecimal string X'452277', type:
IFIIHl4522771ENTERI

C) The load address displayed refers to the first byte in the string.

FED II User Manual
5.1 and 6.0 versions

Page - 13

DISK I/0 Error!_

As with any hardware. there is always that chance of something going wrong. This could
happen when reading from or writing to a disk. For some reason, some component failed
to do its job. The problem could be in the disk media, the disk drive, the disk
contro 11 er, or the computer. Whenever an I/0 error occurs under LOOS, an error number
is returned to the program that requested the disk I/0 function. F£D II reports the
error and al lows the user to decide what to do about it. There are two options
available in FED II : 1) Abort the process, and resume whatever was done prior to the
I/0 error, 2) Ignore the error, and continue the process. Pressing IBREAKI, indicates
an Abort operation. Pressing IENTERI will ignore the error, and continue the process.

Frror Examples

Example #1

Assume that a record from a file on a write protected disk was read in. After exam1n1ng
the record, some changes were made to the edit buffer. Once the operator was content
•i'lith the changes, the !Slave command was issued. Almost immediately, the error message
"Write Protected Disk 11 is displayed. To make the changes, simply take off the write
protect tab and re-issue the ISlave command.

Example #2

While paging through a file, the error message 11 Par1ty Error During Read 11 is displayed.
The edit buffer contains the record which had the error. however the integrity of the
data is doubtful. At this point, the edit buffer could be modified and followed by a
!Slave attempt.

For a detailed description of I/0 errors, refer to the Operating System manual.

FEO II Load ErrQ!!

rwo rare errors need to be examined. If wh i1 e attempting to execute FED I I, the error
message "Insuff·!cient Memory to Load FED" appears, one of two undesirable events has
occurred, l - the a.mount of memory ·1eft in the system is not enough to execute the
program or 2 - Loading FED has overwritten reserved memory (HIGH$). Because of the
danger of #2, the solution is to re•-boot the system. Re-enter FED II only if more free
memory is available.

The second rare error is that a file is so large and the amount of free memory so
sparse that FED II runs out of memory to map a file into load blocks. No error message
wi l 1 be issued but the current file will NOT be mapped. This is exactly like typing 11*"
for the first character of the filespec. This error is not fatal but inconvenient.

Both errors occur rarely because the amount of memory which must be reserved to cause
either problem is unrealistic in normal use. However. in the interest of complete error
trapping. these accommodations have been made.

FED II User Manual
5.1 and 6.0 versions

Page - 14

w A B B A N I Y
All products sold by Logical Systems Incorporated, hereinafter referred to as LSI,
grant the user certain customer support privileges. This support shall be limited to
the privilege of having the master diskette updated as often as desired for the current
update fee. This is limited to updates within the current Series of the program. LSI
wi 11 al so provide a lifetime warranty on the physical diskette media of the original
serialized master diskette. If the diskette media physically fails to retain the
original program, replacement media will be provided at no charge. This does not
include media that has been damaged 1n shipment from the user to LSI, or media that has
been damaged by the user or their equipment. To receive this support, the user MUST
fi 11 out and return a specific registration card pertaining to the product, within 30
days of purchase. Should a user find a valid error in the program and clearly define it
in writing to LSI, every effort will be made to correct the error. All support shall
apply only to registered owners.

Logical Systems Incorporated and its associates assume no liability whatsoever, with
regard to the reliability and/or fitness of their products. All data entrusted to these
programs and the computer that it 1s operating on are the sole responsibility of the
user. Under no circumstances will LSI or its associates be held liable for the loss of
TIME, DATA. PROGRAMS or for any consequential damages incurred by the user.

This manual, as well as the accompanying programs and data files, are Copyrighted c by
Logical Systems, Incorporated, all rights RESERVED. Reproduction and/or distribution
by any means, is hereby forbidden except by written consent.

For additional information, please contact:

Logical Systems Incorporated
P .O Box 23956

8970 N. 55th Street
Milwaukee, Wisconsin 53223

(414) 355-5454

FED II User Manual
5.1 and 6.0 versions

Page - 15

Appeas 1x one
LOAD MODULE FORMAT FILES

One of the most frequent tasks requested of the operating system is the system's own
internal loader. Its function is to load machine language programs from load module
files into memory. Everything from application programs such as FED II and TBA. to
utilities 1 ik e FORMAT and BACKUP, and even system files all are loaded via the system
loader. A11 programs do not load at the same address, they seldom have the same length,
and they rarely have the same execution address. Therefore, a special format was
established to provide this variable information to the system loader. This is now
ca 11 ed Load Module Format. When an LOOS compatible assembler, such as EDAS, writes an
object f i 1 e program (ICMO) to disk, it uses this specific format. Data is written in
blocks, not necessarily contiguous.

Each block consists of:

1) l byte indicating the Type of block
2) l byte indicating the Length of this block
3) Data pert i!lent to the particular b 1 ock type

The b1ocks are organized sequentially, the length of the block defined indicates the
position of the next block. The system loader reads until it encounters a block type
indicating that it should cease loading. The following is a list of Type bytes and
functions that FED II will acknowledge.

Type Byte

X101'
X102 1

X'03'
X'05'
X107'
X '10'
X 1 lF'

Function

Load Object block into memory
Get Transfer Address
Get Transfer Address {non-executable)
Load Module Filename Header
Patch Header Name
Yanked X-Patch Object block
Comment Block

The byte fol lowing the Type byte is a length byte. which indicates the the quantity of
data bytes following. The length byte has a range from X101 1 to X100' (1 to 256; note
that zero is high here). A length byte of X107' indicates seven bytes in the data
field. A length byte of X'00 1 indicates 256 bytes of data. For Type bytes X'01' and
X1 10 1 • the quantity of object code data bytes following is equivalent to the length
byte minus two. Trds is because object code blocks contain an additional two bytes
immediately fo'llowing the length byte indicating the load address (See Type Byte
X1 01'). A length byte of X1 03 1 , indicates three bytes follow: 2 bytes for the address,
and 1 byte of object code data, A length byte of X'00' indicates 256 bytes follow: 2
bytes for the address. and 254 bytes of object code data. Since the address field is
always. present. its length is assumed by the loader. A length byte of X'01' indicates
255 bytes (X 1 FF 1) of object code data following. A length byte of X'02' indicates 256
{ X '00 1) bytes of object code. By subtracting two from the length byte, the actual
quantity of bytes loaded can be obtained.

The data fol lowing the length byte is dependent of the type of block. There are no
restrictions on what the data in the block must be. Generally, block types X'9)5' and
X1 lF 1 contain ASCII text. but aren't required to.

FED II User Manual
5.1 and 6,0 versions

Page - 16

Load Object Block - TyPe X1 01'

This type indicates that the following data is to be loaded into memory. The two bytes
fo 11 owing the length byte are the destination (or starting load address) of the object
block. The load address is stored in LSB, MSB (Least Significant Byte followed by Most
Significant Byte) format. Since two bytes of the block are used for the load address,
the length byte must account for this. The easiest way to understand this is by looking
at a typical block:

118819 79 CD 47 95 CS 87 DO

The length byte indicates that this block is X1(ll8 1 bytes long. The address to load the
data block at is X1 7000 1 (lsb,msb format). However, only X1 06 1 bytes are loaded into
memory. This is because two bytes of this block were used to designate the load
address. Therefore the actual area of RAM that will be loaded is X1 7000 1 - X1 7005'.
After this block is loaded, location X1 7000 1 will contain an X1 CD 1 , X1 7001 1 will
contain X147 1 etc.

Yanked Patch Block - Type X1 10 1

This type of block is used exclusively by the LOOS PATCH utility. When an X-patch is
installed in a load module file, a header block and series of object blocks (X 1(rH 1 s)
are appended to the end of the file (overwriting the last Transfer address block). When
the patch 1 s YANKed, all of the object blocks belonging to that patch are changed to
X1 10 1 s so that the system loader won't load them.

Transfer address Block - Types X1 02 1 and X1 03 1

These types f nform the loader where to begin execution once the entire module has
been loaded into memory. Since 1t only takes two bytes to store an address, any bytes
fol lowing the address with a length other than X'02' would be unused. In the following
example:

02 f)2 6A 3F

The transfer address of the module would be X1 3F6A 1 (the address is stored in lsb,msb
format). Most assemblers allow the transfer address to be specified in an END
statement. The only difference between the X'02 1 and X'03' type bytes is that the
latter indicates a file that 1s not executable.

Header and Comment Blocks~ Types X1 05 1 , X1 07 1 , and X1 lF 1

These types do not actual 1y load into memory at all. Most assemblers write an X'05 1

type as the first block of the file. It usually has a length of 6 bytes and the data
following is most likely the first 6 characters of filename. The LOOS PATCH utility
generates the X'!17' type block preceding X-patch data blocks. The data contained
therein is the name of the patch file. This is necessary in order to YANK the patch by
that name. Assemblers most likely do not generate this type of block. This and type
X'l0' are used primar1ly by the PATCH utility. It is sometimes desirable to insert
comments into a program but not have the comments resident in RAM. A block type of
X1 lF 1 indicates a comment block to the loader. Note: none of these block types
specified (X 105', X'07', X'lF 1) have any effect on the object code.

FED II User Manual
5.1 and 6.0 versions

Page - 17

When FED II recognizes a file as Load Module format, it reads through the file and maps
every block. Once FED II has successfully mapped the file, additional information
relevant to that file is now accessible. Wherever the cursors are positioned in the
fi 1 e, the appropriate load module information is d1sp1ayed. nie following are the block
types and the messages that will be displayed:

X'91 1 - Block X'nnnn' ~ X1 nnnn 1

X1 02 1 - Transfer Address X1 nnnn 1

X'lit3' - Transfer Address X1 nnnn 1

X115 1 - File Header Block
X1f7 1 - Patch Header Block
x•1e• - *Block X1 nnnn 1 ~ X'nnnn'
X1 lF 1 - Coaent Block

When positioned at actual object code in a 1oad block, the following will be displayed:

Load Address X'nnnn 1

This is the memory location that w11·1 receh1e the byte at the current cursor position.
An asterisk before this indicates that this byte would load at that address. except
that this block has been yanked (see type X110'}. Alongside the load address will also
be the mnemonic Z-80 instruction. The IL I function of the IFl1nd mode allows
positioning the cursors to a byte in a file which loads into memory at the specified
address. The I I I command positions the cursors to the next instruction. The IJI command
locates the position that the current instruction refers to (either direct or
indirect}. Both of these commands allow for instructions spann'ing load blocks or
sectors. With these commands, it is possible to step through a machine language
program.

When in a load module file. some information w111 always be displayed. regardless of
the current function mode (hex mod1f.Yt ASCII modify, normal). When using a:nrmodify
mode in a load module file, pay VERY close attention to what is being changed. If
1 oader codes are ever overwritten accidenta11y, disastrous results may occur. This
might be realized the next time the file is 1oaded. If the message 11 Load file format
error 11 appears, this means that an 111ega1 type byte was encountered. This could have
happened because the type byte itself was changed, or a length byte was changed
indicating the incorrect position of the next type byte.

In some cases, it might be desirab1e to view a 1oad module f11e as a data file. This is
accompi i shed by typf ng an 11 * 1' before the filesper at the prompt. This action will
prevent tlH? f11e from being mapped. Any string searching will encompass the entire
f11e, including load blocks. For example, to hide a b1ock of object code by changing an
object b1ock, type byte (X 1 fl)l 1 } to a yanked patch block (X'l0') or comment block
(X 1 lF 1). or any other type byte. It is also possible to change the load address in an
object block, or data ·ln a comment block or patch header block. These actions are not
common, but thh feature is proidded for advanced users.

FED II User Manual
5.1 and 6.1 versions

Page - 18

Aeeeng 1x !WSl
DISK STRUCTURE

In order to store information of any type on a disk, it must be formatted. Formatting
is the process in which the disk media's magnetic surface is organized into concentric
citcular regions called tracks. Five inch floppy disks can be formatted anywhere from 2
to 80 tracks. Typical standards are 35, 40 and 80, depending on the drive. Some disk
drives have more than one head, in which case the term "cylinder" comes into play. A
cylinder is a collection of tracks grouped together as one logical unit. For example, a
double headed 40 track drive has 80 total tracks, but only 40 cylinders. Each pair of
adjacent tracks on opposite sides of the diskette form a cylinder. Cylinders are
numbered sequentially starting at the outside edge of the diskette, which is cylinder
zero. Each track is divided into smaller units called sectors. The quantity of sectors
per track depends on the disk type and density. Single density 5" floppy disks have 10
sectors per track, and double density 5" floppy disks have 18 sectors per track. Some
hard drives have up to 32 sectors per track and 256 sectors per cylinder. Each sector
contains smaller units known as bytes. One character of data is equivalent to a byte.

DISK FILES

After formatting and verifying the cylinders on the disk, system information must also
be written to that disk. 11 System Information" is a collective name for two disk files -
BOOT /SYS and DIR/SYS. A disk file is a collection of sectors on a disk in a specific
order. A f 11 e is referred to by means of its filename, extension, and drive number.
This can be abbreviated to the term "File Specification 11 or FILESPEC. The first portion
of cylinder zero is al located to a file called BOOT/SYS, which contains information
necessary for that diskette to boot up. One full cylinder is devoted to a file called
DIR/SYS also known as the directory. The directory is a collection of tables and maps
used to determine anything about that disk - the disk name, password, and date of
creation (specified during format), trow much space is available, how mueh 'is used, what
files exist, how much space they occupy and where those files are located on that disk.
ANY data stored on that disk is stored in a file. Each file is made up of logical units
ca 11 e d records , referred to by a number in the range of 0 through 65535. Each record
has a fixed length between 1 and 256 bytes, the most common being 256 (the same size as
a physical sector). For example, the file named BOOT/SYS contains 5 records, each with
a logical record length of 256. The information such as file length, record length,
dates and status are collectively called attributes of a file. To see the attributes of
any file, use the DIR command with the (A) parameter.

FED II User Manual
5.1 and 6.0 versions

Page - 19

DD& T - Debugger Disassembler and Trace Utility

•

lIDlID& 1F
• • • • • • • • • • •

• • • •

TABLE OF CONTENTS

General Information .•••••.••••••••••.• 1

DD /C MD - Debugger Disassembler • . •••••. 2

DOS Program Trace Utility •.•••

PTRACE - Program Trace Module .••••

STR.ACE - Statistical Trace Report

• 3

3

4

DD/CMD, PTRACE/CMD, and STRACE/CMD: Copyright 1984 by Richard N. Deglin, All
rights reserved. D0&T is published by MISOSYS, Inc., Sterling VA 22170.

LOOS and LS-DOS are trademarks of Logical Systems Inc.
TRSDOS is a trademark of Tandy Corp.

GENERAL INFORMATION

This documentation covers the Model I/III version of 0D&T which
functions under the LOOS 5.1 operating system. It also covers the TRSDOS 6.x
or LS-DOS 6.x version of DO& T called PRO-DD& T. The specific version of DD& T
is noted on the diskette label supplied with this package. The D0&T package
provides the assembler programmer with a major enhancement to the debugger
supplied with your DOS. The Debugger Disassembler module is completely relo
catable. Its interface to the DOS debugger is automatic. The THACE utility
can be used to help hone your programs to optimum efficiency. DD and TRACE
together make 0D&T a set of fine tools crafted to provide you with a reward
ing assembler programming experience.

DD&T ~ 1

OD& T - Debugger Disassembler and Trace Utility

00/CMO - Debugger Disasserrbler

DD/CMO is an enhancement to the DOS system debugger which provides the
added capability of an on-line disassembler during your prngram debugging
sessions. Once invoked, it resides interfaced to the system's DEt1UG module -
available at the touch of a button. DD is invoked via the command:

==========================--==============-========;

DD (parameter)

ON Loads the DD module into high memory
and links into the ~ystem debugger.

OFF Unlinks DD from the debugger and
reclaims high memory if possible.

Abbr: ON=YES or Y, OFF=NO or N

======~===

The comrnand "DO (ON)" or "00" loads the DD high memory module and links
itself into the system debugger. DD may be SYSGENed if you find it convenient
to have the Debugger Disassembler available at each boot. The high memory
module takes less than 1600 bytes of memory. A subsequent entry into the
system debugger (normal or extended) activates the DD module. In the upper
right hand corner of the debugger register display ("X" mode), DD will dis
play a rnn e manic disasse mb I y of the Z80 instruction which the current program
counter (PC) points to. After a single-stepping debugger command ("I", "C",
or "J") is executed, or a breakpoint is reached via use of the "G,nnnn" com
mand, DD will update this instruction disassembly automatically.

DD also provides for Z80 disassembly directly from any memory location
in your computer's 64 Kilobyte address space. The command "Z<ENTER>" will
start the disassembly from the current program counter. The command
"Znnnn<ENTER>" will start the disassembly from the hexadecimal address given
in the command as "nnnn". The screen will clear, and 16 or 24 lines of dis
assembled instructions will be displayed, depending on whether you are oper
ating version 5 or 6 of the DOS. You may continue the display with one or
more additional screenfulls of disassembly by typing any keystroke; if you
type "X", however, you will be returned to the prior debugger display screen
("X" or "S" mode).

The DOS command "DO (OFF)" will unlink DD from the system debugger and
attempt to reclaim high memory space. If DD is the first module found in
protected high memory, the space will be reclaimed and the protected memory
pointer (HIGH$) adjusted. If the DO module is not the first protected module,
DD will unlink but the high memory allocation will remain. If the latter is
the case, and you reload DD with the ON parameter, it will reuse the same
high memory space as it previously occupied.

DD&T - 2

DD& T - Debugger Disassembler and Trace Utility

DOS Program Trace Utility

The function of the TRACE utility is to simply show you where your pro
gram spends most of its time in execution. Programs may be coded so that they
waste too much time in inefficiently written program routines. TRACE finds
these program sections for you by means of the Statistical TRACE Report. You
should compare your program listing against the TRACE report and analyze the
routines where your program spends its time. Start tracing with a coarse ad
dress range. Once you identify major sections, you can narrow the trace to
produce a more detailed snapshot of a given piece of code. Ask yourself if
the section of code should normally be executed more frequently than other
sections. If there is no reason for such frequent execution, look for another
way to code the routine. By reducing these bottlenecks of inefficient rou
tines, your programs will run faster.

The DOS program trace utility is a package of two utilities designed to
help you optimize the design and coding of an assembler application program.
It consists of two utilities; PTRACE which records program activity by exe
cution address ranges and, STRACE which compiles and displays the statistics
of a series of PTRACE runs.

PTRACE - Program Trace module

PTRACE allows you to execute the target program in an environment which
maintains a record of all program activity. Note that you cannot directly
trace a library member. Your selected address range is divided evenly into
256 "buckets". PTRACE keeps a counter for each bucket. Two other buckets are
used to track activity in areas above and below the selected range. Every
time a system heartbeat interrupt occurst PTHACE de- terrnines the program
counter at the time of interrupt and updates the counter corresponding to the
correct bucket. PTRACE is invoked via the command:

--
PTRACE trace-file (START=X•nnnn 1 ~END=X 1 nnnn'}

trace-file The filespec to receive the trace
data table generated during the
target program's invocation.

START

ENO

The lower address range to obtain
trace data.

The upper address range to obtain
trace data.

Abbr: START=S, ENDcE

-------------------------------- ----------------. -

DD&T - 3

DD& T - Debugger Disassembler and Trace Utility

The trace file is written out to disk when the tracB terminat(~s; i.e.
when the target program exits to DOS Ready. 5 T /\RT and END determine the ad
dress range; they must be greater than 255 bytes apart. The defau.lts are
START-:::X 10000' and END-=X'FFFF 1• To keep inter-rupt overhead ton minimurn, the
range is rounded up to the next higher power-of-2; e.g 256, '.,12, 102.4. The
maximum range is all of memory, or 65536. If the table filespec [trace-file]
is not entered on the DOS command line, PTHACE will prompt for it. In any'
case, PTHACE will prompt for the command li.ne which wil.l execute the target
program. This is entered identically to the DOS command line which would be
used to invoke the target program normally. PTRACE will load and execute the
target program, trace its activity, and terminate by saving the bucket
counters and associated range data as a Program Trace Table to a disk file,
with default extension /PTT. While the trace is active, PTf:V\CE will fl

blinking asterisk (*) in the upper right corner of the video Bcreen.

Ten sample trace tables are included on this disk as TO/PTT through
T9/PTT.

STRACE - Statistical TRACE Report

STRACE will report statistics computed from the data in one or more
trace result files. In many cases, it will be desirable to repeat a PTRACE
run several times. This depends on the range of the trace, how long the tar
get program executes, and how fast your DOS computer is running (2 MHz or
4MHz, for instance). If a range is wide, the trace results will be coarser.
If a target program run is short, fewer statistics will be gathered. If your
computer is running fast, the fixed system interrupt interval will fall be
hind program activity. In any case, the more trace runs you make, the better
the statistics will be. Use of a Job Control Language file to invoke PTHACE
will ease this process.

SH~ACE is invoked by the command:

STRACE [trace-file-1] [trace-file,-2] ••• [trace-file-N]

The file extension de fa u It of "/PT T" will be added to the fB e specification
if you omit it. The report can be redirected to the printer by appending
">*PR 11 to the command line, or to a file by appending ">report file" to the
command line. The quotes are not entered. At least one trace file specifi
cation must be entered, but their order is not significant if more than one
is present.

If a consecutive series of "buckets" within the trace range au have a
count of zero occurrences, they are squeezed together to forrn one 11bucket11 in
the output listing.

You cannot generate an STRACE report from trace tables with different
address ranges. A sample trace report is included on this disk as TEST/RPT.

DD&T - 4

DESCRIBE ... Directory Descriptor Extension

General Information •

Invoking DESCRIBE .

TABLE OF CONTNETS

A Her a des er iptor f i.e 1 d

Change to a new drive.

DOS Command request

File directory display

Help information

Interchange data LOAD and SAVE

Modify listing format.

Remove descriptors from a disk

Search for a string

1

2

3

3

4

X

X

X

X

X

X

DESCRil3E: Copyright 1984 by MISOSYS, INC., All rights reserved. DESCRIBE is
published by MISOSYS, Inc., Sterling VA 22170.

LOOS and LS-DOS are trademarks of Logical Systems Inc.
TRSDOS is a trademark of Tandy Corp.

GENERAL INF OR MA TION

This d o cu m e n ta ti on co v e rs th e M o d el I /III v e rs ion of D E S CR 18 E w hi c h
functions under the LOOS 5.1 operating system. It also covers the TRSDOS 6.x
or LS-DOS 6.x version of DESCRIBE called PRO-DESCRIBE. The specific version
of DESCRIBE is noted on the diskette label supplied with this package. The
program and its overlays are stored in a Partitioned Data Set. This file has
a password which limits its access to READ. If for any reason you need to
write to the DESCR.18E/CMD file (such as to apply a patch) or to RENAME the
file, or any other access which is greater than READ, use the password,
".DESCi~IBE11 •

DESCRIBE provides the user with an extension to the DOS directory which
incorporates a 63-character descriptor record. This facility gives you the
convenience of a complete description for each file - anytime that the file
is accessible.

DESCRIBE - 1

DESCRIBE - Directory Descriptor Extension

INVOKING DESCRIBE

DESC::Rlt3E is easily invoked in two formats. To invoke the utility for a
maintenance purpose (such as to edit a descriptor field), just enter the
command,

DESCRIBE

or whatever name you have RENAMEd the program data set. A menu of operations
will be displayed. If you only want to display a file directory display for a
disk that has been extended with descriptors, invoke DESCRIBE with the com
mand,

DESCRIBE ambigspec

where "ambigspec" is considered to be an ambiguous file specification. This
takes the form of a file name field, a file extension field, and a mandatory
drive specification. Within the filename and extension fields, the character
11* 11 will match all other characters remaining in the field while the charac
ter 11 ? 11 will match all other characters in that position. If the filename
field is blank, it will default to "*"· If the extension field is blank, it
will match only a file with no extension. If you omit both fields, the am
bigspec defaults to */*:d.

If you select the maintenance mode of invocation, the displayed menu
will look something like the following screen.

DESCRIBE 1.0 Copyright {c) 1984 MISOSYS, Inc.

<A>lter descriptor field

<C>hange to a new drive

<D>OS Command request

<F>ile directory display

<H>elp information

<I>nterchange data

<M>odify listing format

<R>emove descriptors

<S>earch for a string

e<X> it to DOS

DESCRIBE is a tool to extend your disk directory with a descriptor field
for each file. The field is 63 characters in length and is used by you to add
information describing each file stored in the directory. DESCRIBE provides
commands to manage these descriptors as well as provide you the means to
construct customized sorted directory displays to the display screen, your
printer, and even a disk file. DESCRIBE also has a command to allow you to
invoke a DOS command as if you were at DOS Ready. While the main menu is
displayed, a blinking cursor is positioned to the left of a command letter.
Commands can be accessed by depressing the letter contained within angle

DESCRIBE - 2

DESCRIBE - Directory Descriptor Extension

brackets or by moving the cursor via UP/DOWN arrows to the command "word"
then depressing <ENTER>.

Alter a Descriptor

A is used to ALTER or EDIT the descriptor field. When you enter this
command, the screen will display a file's name along with the MOD date and
attributes. If any descriptor field is present, it will also be displayed.
The prompt tells you to use the UP/DOWN/ENTER keys to scroll through each
filespec. If you wish to edit a descriptor field, depress the letter "E". The
editing keys at your disposal are:

CLEAR-LEFT-ARROW - Delete the character at the cursor
and shrink the line by one position

CLEAR-RIGHT-ARROW - Expand the line by one character
LEFT-ARROW - Move the cursor left one position
RIGHT-ARROW - Move the cursor right one position
ENTER - Store changes and proceed to next file
BREAK - Abort changes and proceed to next file

If the file's name is prefixed with a question mark, it means that file has
been added to the disk since the directory was extended. This "flag" will
automatically disappear once you edit the descriptor field. As an aside, once
you delete a file from a directory after you have "describe.d" it, the de
scription will not come up during the ALTER command.

Change to a New Drive

During the maintenance operations, the directory descriptor extension
for a diskette is kept in a memory buffer. The CHANGE command is used to
identify the disk drive you want to describe. You must use this command to
identify the first disk to operate with. Thereafter, each time you wish to
change to a different disk, YOU MUST INVOKE THIS <C>HANGE COMMAND PRIOR TO
SWITCHING DISKETTES. That's to give DESCRIBE an opportunity to update the
descriptor data and close the directory. The program attempts to ensure that
the disk to update is the same as the current one by matching the disk pack
identification. This is not failsafe! It is strongly recommended that you
assign a unique disk name to each diskette in your collection. Aside from the
importance for a program such as DESCRIBE to uniquely identify each diskette
from another, catalog programs such as ZCA T need uniquely assigned diskette
names. Its a good practice to get into.

DOS Command Request

This DESCRIBE command allows you to enter any command acceptable at the
DOS Ready prompt. Your command will be invoked by the DOS. At its conclusion,
a prompt to "Press <ENTER> to continue" will be displayed. After you depress
the <ENTER> key, the DESCRIBE menu will re-appear; the descriptor buffer will

DESCRIBE - 3

DESCRIBE - Directory Descriptor Extension

be intact.

File Directory Display

This 11 F 11 command is used to obtain the directory listing of files. The
display is formatted according to the user defined format specification. This
specification can be customized via the "M" command. The listing will be
titled if the first character of the specification is a plus sign("+"). The
title is constructed with headings appropriate to each data item in the
listing (see the "M" command for titling details). A line of dashes completes
the title.

The listing format for each file is con trolled by the sequence of key
words and other characters contained in the format specification. When you
invoke the "F" command, the prompt,

Output to <D>isplay, <P>rinter, or <F>ile?

will be displayed in the status line. This gives you an opportunity to select
the destination device for the listing. Depressing "D" followed by <ENTER>
will select the video display screen. This will produce a display paged ac
cording to your screen size. Depressing "P" followed by <ENTER> will produce
a printer listing. If you select the "File" output, you will be prompted to
enter the name of the disk file to which you want the output written. De
pressing <ENTEf~> by itself will also select the video display screen paged
listing. A <BREAK> will abort the operation.

Help Information

This command provides eight screens of text which describe various
functions of the DESCRIBE program. The help screens are useful once you be
come slightly familiar with the DESCRIBE facility by providing you with an
abbreviated on-line user manual.

Interchange Data

This command allows you to load or save the directory data identified by
the format specification from/to a data file. The file is structured in the
Data Interchange Format (DIF). The load operation will extract the descriptor
fields from the DIF file loaded and update the current set of descriptors
when the file specification matches. The load operation requires that the
following fields are present in the DIF file: $DES and $SPC or $DES and $NAM
(or $NAX) and $EXT (or $EXX). An error will be generated if the required
fields are not present. The save operation creates a DIF file in column for
mat.

A typical use for the generation of a DIF file would be to transfer the
contents of the descriptor fields to a backup disk. A non-typical use would

DESCRIBE - 4

DESCRIBE - Directory Descriptor Extension

be to create a DIF file of directory information and load the data into a
spreadsheet program - although its quite possible.

Modify Listing Format

The MODIFY command allows you to alter the format specification to
customize the file directory display listing. When you invoke "M", the cur
rent format will be displayed along with a listing of the keywords supported.
This modifies the menu screen with an addition such as the foHowing box. The
format specification illustrated is the default format generated by DESCRIBE
when a descriptor extension is first created.

I
I
I
I

ATT DAT DES DEX ORV EOF ERN EXT EXX LRL
NAM NAX PRO REC VID VNM VDT

1+$spc $att $pro $lrl $rec $eof $dat;$des;)
I
I <ENTER> to save edits, <BREAK>·to abort edits
'-----------------------------

The two rows of keywords are displayed as memory joggers. The keys should be
quite descriptive for the values they stand for. The Format Table provides
the keyword description and the title string generated when a title is re
quested. Within the format, each keyword must be prefixed with a dollar sign.
If the first character is set to a "+", the listing will include a title. The
string must be terminated with a closing parenthesis. If you omit it, a
closing parenthesis will automatically be applied when you save the format.
The semicolon, ";", can be used to specify a logical carriage return. This
should be used if your format contains a line which is going to exceed the
screen width. The format string is edited with the same edit functions as the
ALTER command. DESCRIBE provides a maximum of 64 characters for the format
string.

DESCRIBE - 5

DESCRIBE - Directory Descriptor Extension

------------------------ tormat Table-------------------------
Key Definition Title String

ATT File attributes; "+*SIPC"
DAT Mod date; 11dd-rrmm-yy 11

DES Descriptor field
DEX Descriptor field to 63 chars
ORV Disk drive; 11 :d11

EOF End-of-file offset; 11ddd 11

ERN Ending record number; 11ddddd 11

EXT File extension
EXX File extension to 3 chars
LRL Logical record length; 11ddd 11

NAM File name
NAX File name to 8 chars
PRO Protection level; 11 prot 11

REC Number of records by LRL; 11 ddddd 11

SPC File name and extension string to
VDT Volume date; MM/DO/VY
VID Volume name and date to 16 chars
VNM Volume name to 8 chars

Remove Descriptors

Attrib
Mod date
File Description
File Description
D
Eof
Ern

Ext
Ext
Lrl
Fi 1 ename
Fi 1 ename
Prot
Nrec

12 chars Filespec
Vol Date--
Disk Pack ID
Vol Name

The RE!V1QVE. command allows you to delete the descriptors from the direc
tory of the currently logged disk. This facility is the only way you can
properly restore the directory to its standard size. You will be prompted to
continue the removal operation prior to its execution. This is a safeguard so
you don't inadvertantly delete all of the descriptors that you so painstak
i n g l y edited. If you w an t to re mo v e the d es c rip to rs bu t re store th em at a
later date, why not first prepare an interchange file with $SPC and $DES data
so that the descriptor contents can be saved for the restoral?

Search for a String

The SEARCH command allows you to invoke a file directory listing which
includes all files with a descriptor character string that matches your
search string. Your search string can be up to 32 characters in length. The
matching is performed without regard to UPPER/lower case (it is case insen
sitive). By using this command, you can obtain a directory display based on a
file's description rather than on just its name.

DESCRIBE - 6

TABLE OF CONTENTS

GENERAL
WHAT IS PRO-CESS/CMDFILE?

THE PRO-CESS/CMDFILE MENU •.

RE-ENTRY AFTER INADVERTENT EXIT

COMMAND DETAILS

PRO-CESS/CMDFILE PUT TO USE

DISK LOAD MODULE FORMATS ••.

. 1

2

• • • • • 3

• • • • • • 4

• • • • 5

• • • 12

. . . • 13

Authored and copyrighted (C) 1979/1983 by Roy Soltoff.
PRO-CESS/CMDFILE is published by MISOSYS, Alexandria, VA.

LOOS is a trademark of Logical Systems, Inc.
TRS-80 and TRSDOS are trademarks of Tandy Corp.

GENERAL

PRO-CESS/CMDFILE is a powerful maintenance tool for 11 CMD 11 or 11 CIM 11 type
load module files. It provides for file appending, mapping, sorting, packing,
offsetting, library member and partitioned data set member extraction, as
well as the specified deletion of any load module record. PRO-CESS/CMDFILE
can convert "CMD" files which contain various types of records to "CIM" files
which are pure binary core-image constructs. It also provides the capability
of converting 11 CIM 11 files to 11 CMD 11 files. PRO-CESS/CMDFILE gives capabilities
to load module maintenance never before possible. PRO-CESS/CMDFILE does it
all: rapidly, totally, and economically!

The CMOFILE utility is provided on a 35-track single density data
diskette and is operational on TRS-80 Models I and III. The PRO-CESS utility
is provided on a 40-track single density data diskette and is operational
under LDOS/TRSDOS Version 6.

PRO-CESS/CMDFILE
- 1 -

PRO-CESS / CMDFILE Load Module Maintenance Tool

WHAT IS PRO-CESS/CMDFILE?
=========================

The PRO-CESS/CMDFILE tool is a powerful machine language program that
has been designed to provide total maintenance of program load modules on a
record basis. This means that it references the load module as a multi-record
type, variable length record file - just like the operating system loader. By
using the various commands identified in the PRO-CESS/CMDFILE menu, you can
completely reorganize the load structure of a given module or modules in
order to make them more efficient in terms of loading speed and occupied disk
space.

PRO-CESS/CMDFILE also provides the capability of converting 11 CMD 11 type
load modules to/from 11 CIM 11 core-image load modules. This is especially useful
to generate program files in 11binary 11 form for PROM burners. The 11 CIM 11

structure is identical to the 11 COM 11 structure used in other types of
operating systems.

You get the capability of appending two or more 11 CMD 11 machine language
load module files into one file. This is useful to concatenate two or more
separately assembled OBJECT code files, concatenate two or more
non-contiguous blocks of code, or also couple two or more programs together
so they load together. You get control of the program's transfer address or
ENTRY point.

11 CMD 11 files can be copied from one SYSTEM diskette to another SYSTEM
diskette on a single drive system provided both diskettes use the same
operating system.

You get the capability of totally mapping every record in a load module.
Determine the TYPE as well as the load address range of each load record.
This load map is displayed in the MENU status. You can optionally request
that a map listing be sent to a line printer.

You can selectively remove any record in the load module. Get rid of
space-wasting headers that are not necessary. Remove dead space. In case you
make a mistake, you can even un-remove a removed record before clearing the
load-module's memory buffer.

By far, the most powerful function included in this tool is the
reorganization capability of the PACK command. This powerful function
converts any X-type patches to D-type patches [X-type patches are generated
by the LOOS Version 5 or LDOS/TRSDOS Version 6 PATCH utility]. It then sorts
the buffer by load address to construct sequential load records and generates
a load module file that uses maximum sized (256-byte) load records. This
feature is quite useful for reorganizing large inefficiently generated load
modules such as Tandy's COBOL package. The PACK function is also useful for
reorganizing the out-of-sequence load modules generated by the LC compiler
[the records are out-of-sequence due to the separation of program and data
regions during the compilation process].

PRO-CESS/CMDFILE
- 2 -

PRO-CESS / CMDFILE Load Module Maintenance Tool

THE PRO-CESS/CMDFILE MENU
--

When you execute the PRO-CESS maintenance tool, all of its functions are
immediately available through single letter commands. These commands are
displayed in the PRO-CESS MENU. A reasonable facsimile of the MENU follows.

PRO-CESS 2.0 [Copyright (C) 1983 Roy Soltoff]

<C>lear the buffer region
<D>OS Command request
<E>xit to DOS
<I>mage file load/write

X<L>oad a file into the buffer
<M>ap the buffer records
<O>ffset address from current load origin
<P>ack the buffer records
<R>emove a record from the buffer
<S>ort the load records by address
<U>n-remove a "removed" record
<W>rite the buffer to a disk file

Buffer: Size 46802 Used 00002 Free 46800 Records 00000
Module: Origin FFFF End 0000 Entry 0000 Offset 0000

This menu is designed for display on a 80x24 video display. The CMDFILE MENU
contains exactly the same information but is compressed to fit on a 64xl6
video display.

The menu of commands contains each command letter within angle brackets,
"<>". For instance, the command to "<L>oad a file into the buffer" can be
selected by depressing the "<L>" key on the keyboard. Each of the commands
displayed in the MENU may be selected by depressing whatever key is contained
in the angle brackets. Notice that the 11 <L>" command has a large blinking
graphics block preceding it. This "cursor" is used for an alternate means of
command selection. If you depress the <UP-ARROW> key, the block will move up
to precede another command. The <DOWN-ARROW> key will move the block down to
the next lower command. The block will wrap around in either direction. When
PRO-CESS/CMDFILE is waiting for you to enter a command request, this cursor
block will blink. When a command is being processed, the cursor block will
not be blinking. Any menu command that is preceded by the graphics block can
be selected just by depressing the <ENTER> key in lieu of the command letter.
This featuure is provided for your convenience. When you use the command
letter to select a command, the block will be automatically moved to that
menu command so you will have a visual indicator as to the command currently
in progress.

In order to provide maintenance on a load module file, the file must be
loaded into the PRO-CESS/CMDFILE memory buffer. The MENU will constantly
display the status of this buffer via the status line titled, "Buffer:". The
status line contains four fields: Size, Used, Free, and Records. The "Size"

PRO-CESS/CMDFILE
- 3 -

PRO-CESS / CMOFILE Load Module Maintenance Tool

field will display the total number of bytes provided for the buffer. This
value is determined from the memory available between the end of the
PRO-CESS/CMOFILE program and the highest memory address available based on
the 11 HIGH$ 11 value. The "Used" field contains the number of buffer bytes that
are currently in use. Each record that is loaded into the buffer requires a
two-byte linkage pointer in addition to the memory taken up to store the
record. Two bytes are initially used to store the "head" linkage pointer. The
11 Free 11 field shows you how many bytes are available for use. This field is
the difference between "Size" and "Used". The "Records" field maintains a
count of the total number of records stored in the buffer.

The MENU also displays the status of the program load records currently
stored in the buffer. This status covers the program's ORIGIN or lowest
address, its END or highest address, its ENTRY or transfer execution address,
and any OFFSET specified. The OFFSET is a maintenance function that can be
used to construct a file which loads into an address space different fr.om
where it executes.

The line of dots represents a third status/prompt line which will
display informational mesages pertinent to PRO-CESS/CMOFILE commands and
prompting messages where required. It is also used to display any error
message returned by the operating system during service requests.

RE-ENTERING PRO-CESS/CMOFILE AFTER INADVERTENT EXIT
===

It sometimes happens that you <E>xit the program without <W>riting the
buffer to a file. Rest assured that you can recover from this mishap. If you
immediately execute:

PROCESS* or CMOFILE *
the program will not automatically <C>lear the buffer region. The asterisk,
11* 11 , provides the needed error recovery. Use the <M>ap command to scan
through the buffer to ascertain its validity before attempting to generate a
file.

PRO-CESS/CMDFILE
- 4 -

PRO-CESS / CMDFILE Load Module Maintenance Tool

COMMAND DETAILS

The following sections will describe the function and operation of all
PRO-CESS/CMDFILE commands identified in the MENU.

<C>lear the buffer region

The <C>lear command is simple enough - it restores the buffer as if you
just executed the program. Since this action will automatically clear any
load module contained in the buffer, PRO-CESS/CMDFILE gives you a second
chance to acknowledge your selection. The MENU status will display the
prompt:

Are you sure you want to clear the buffer <Y,N>? >

By entering a response of <N>, you will abort the <C>lear selection. A
<BREAK> will also abort the selection. Only by entering a <Y>, will the
<C>lear function activate. When the buffer is cleared, you will observe a
"flash" of the video display as the MENU is re-generated.

<D>OS Command request

The <D>OS Command function provides access to operating system commands
from the MENU level. Your DOS requests should be limited to library commands
[a summary of library commands is normally obtainable via the "LIB" DOS
command]. You enter your command request in response to the prompt:

Command?>

After your command is entered, the MENU will be erased while your command
line will be displayed at the top of the video display screen. When the
command that you requested is completed, you must depress the <ENTER> key to
refresh the MENU display. This provides the opportunity of analyzing any
screen image displayed by the DOS command before the MENU display erases the
image.

<E>xit to DOS

This command provides the means to terminate the maintenance session and
return to DOS.

<I>mage file load/write

This command provides two functions - both relating to core-image files.
Use the <I>mage command to load a core-image file from disk into the buffer.
You also will use the <I>mage command to write the buffer out as a core-image
file. To help with your selection, the MENU wi 11 display the prompt:

PRO-CESS/CMDFILE
- 5 -

PRO-CESS / CMDFILE Load Module Maintenance Tool

Image file LOAD or WRITE <L,W>? >

A response of <L> invokes the image loading function which subsequently
requests you to enter the image file specification via the prompt:

Input file specification>

If you omit the file extension, PRO-CESS/CMDFILE wil 1 use 11 /CIM 11 as the
default extension.

Since core-image files have no loading information contained in the
file, it is necessary to specify the origin address of the module. You do
this in response to the prompt:

Enter the module origin or <ENTER> to use [0000] >

Your selection must be entered in hexadecimal. Also, as can be noted by the
prompt, if you depress just the <ENTER> key without a value, a default origin
of X'OOOO' will be used. This value will also be used for the ENTRY or
transfer address. The entire file, including the full last sector, will be
considered as part of the program.

If you respond to the initial prompt with a <W>, you will invoke the
image writing function. It is essential that the load records stored in the
buffer be in sequential load order. The <IW> function will first scan the
1oad records to ensure that they are, for a core-image file cannot be
constructed if the records are out of order. If a problem is detected, the
MENU will display the error message:

Buffer is not in sequential load order!

It is not necessary for the load records to be contiguous. The <IW>
function will generate null bytes, X100', for all addresses interstitial to
two adjacent non-contiguous load records. You identify the file specification
of the file to be written by responding to the MENU prompt:

Output file specification>

If you omit the file extension, the default value of 11 /CIM" will be used.
Upon successful completion of the file generation, the message:

Requested file now written

wi11 be displayed and PRO-CESS/CMDFILE wi11 await your next MENU selection.

<L>oad a file into the buffer

The <L>oad function is used to read a load module file into the memory
buffer. The file will be appended to any already contained in the buffer. You
identify the specification of the file in response to the prompt:

Input file specification>

PRO-CESS/CMDFILE
- 6 -

PRO-CESS / CMDFILE Load Module Maintenance Tool

If you omit the file extension, the default value of 11 /CMD 11 will be used.
While the file is being read into memory, PRO-CESS/CMDFILE analyzes it to
determine the specific type of load module: OBJECT file, ISAM overlay file,
or a partitioned data set (POS) file [the POS file structure has been defined
by MISOSYSJ. An object file will be loaded directly into the buffer.

If the file is recognized as an LOOS structured ISAM overlay file, you
will need to identify the overlay number of the desired member. In general,
system files SYS6/SYS and SYS7/SYS are both ISAM overlay files. Under LOOS
Version 6, SYS8/SYS is also an ISAM overlay file. These numbers are listed
later. You will be requested to enter this ISAM number entry with the prompt:

File has ISAM overlays - enter I>

This number is entered in hexadecimal. If you respond to the prompt by
depressing the <ENTER> key without a number, the entire file will be loaded
into the memory buffer. The only purpose for doing this would be to map the
file as no reorganization is possible with this maintenance tool.

If the file is recognized as a POS file, you need to specify a MEMBER
specification. This is done in response to the prompt:

File is a partitioned data set, enter MEMBER>

The MEMBER is the eight-character member specification as observed from a
directory display of the POS members. If you respond to the prompt by
depressing the <ENTER> key without a MEMBER, the POS Front End Loader program
will be loaded into the memory buffer. Since it is likely that any given POS
contains non-GMO members, the PRO-CESS/CMOFILE maintenance tool does not
attempt to read the entire POS file into memory.

If you specified an ISAM number or MEMBER that can not be located in the
file, the error message:

Requested ISAM member is not in the file!

will be displayed. It is highly improbable to receive the error message:

Overlay beyond end of file!

however, if you do, it means that the ISAM directory contains a location for
the member that is not within the scope of the file. You probably have an
error in the file.

If any disk I/O error results while the file is being read, or any
problem occurs that results in the file not being read to completion,
PRO-CESS/CMOFILE will return to the MENU conrnand request after displaying an
appropriate error message. No fragment of the file will be added to the
memory buffer.

If there is no more available space in the memory buffer during the
loading of a file, the error message:

Insufficient buffer space to load file!

will be displayed.
l

PRO-CESS/CMDFILE
- 7 -

PRO-CESS I CMDFILE Load Module Maintenance Tool

If you attempt to load in a file that is not a load-module structure
file, PRO-CESS/CMDFILE will display the error message:

File is not a load module file structure!

and the load operation will cease.

Upon successful completion of the load operation, the message:

File is now loaded into the buffer

will be displayed. The buffer and module status lines will be updated to
reflect the revisions made to the buffer with the load of the file.

A <BREAK> detected during the loading of a file will immediately abort
the loading operation. No fragment of the file will be added to the memory
buffer.

<M>ap the buffer records

This MENU command provides the function of mapping the buffer contents.
Mapping is useful for obtaining the record number of records you wish to
remove. It is also helpful to understand how unorganized your load module
file is. The prompt message:

MAP output to printer <Y,N>? >

gives you the option of directing a load-module map to a printer by
responding with <Y>. If you respond with <N>, only the status line will
display the mapping, one record at a time. If you do not select a printer
map, it is necessary to depress the <ENTER> key to obtain the mapping
information for each record.

Each record will be given a sequential logical record number. This
number is used as a record reference in the <R>emove and <U>n-remove MENU
commands. Records will be identified as to type: Module header, Yanked load
block, Load, Transfer Address, and so forth. The address range of load
records will also be displayed.

If you specified the printer option, the printer will first be checked
for availability. If it is not ready for use, the message:

Printer is not available!

will be displayed until it is made ready. The <BREAK> key can be used to
escape from this condition.

<O>ffset address from current load origin

Ofsetting a load module means changing its loading address so that it
loads into memory at a location different from where it was assembled to

PRO-CESS/CMDFILE
- 8 -

PRO-CESS / CMDFILE Load Module Maintenance Tool

execute. There are a few reasons for wanting to offset a file. One, of
course, is to offset a file assembled to run from a PROM so that it loads
into a RAM region usable by a PROM burner. The <O>ffset MENU command requests
the revised load origin via the prompt:

Enter the offset origin address>

This entry is to be made in hexadecimal. For example, if the existing load
module origin is X'3000 1 and you want it to load starting at X1 5300 1 , enter
the four-character value, <5300>.

<P>ack the bufferrecords

The <P>ack operation is the most powerful feature of PRO-CESS/CMDFILE.
It is used to reorganize an object load module file so that it is most
efficient in disk storage space and optimum for rapid loading by the
operating system. Packing is a three-phase operation. The first phase
identifies any LOOS X-type patch records and packs the object code revisions
into the preceding load records wherever possible. Any patch address that is
outside the range of the existing load records, is used to generate new load
records. The second phase then uses the <S>ort facility to sequence the load
records by sequential load address. The third and final phase generates a new
object load module file with maximum-sized load records. This is achieved by
combining short contiguous load records wherever possible.

The first two phases require no
messages are displayed to apprise you
identified by the message:

action from you. Appropriate status
of the phase. The first phase is

Packing any "X" patches ••.

The second phase is noted by the sorting message as noted in
command discussion. The third phase will generate the dialogue
the <W>rite command discussion.

<R>emove a record from the buffer

the <S>ort
as noted in

This MENU command can be used to delete an entire record from the load
module. You must identify the record by number. The record's number can be
identified with the <M>ap command. The record is deleted by setting a
11 removed 11 flag for the record which is bit-7 of the record's TYPE byte. For
instance, a load record will be changed from TYPE=Ol to TYPE=81. If you map
the buffer after removing a record, you will observe the change. Any record
that is 11 removed 11 will not be written to a file during the <W>rite or <I>mage
<W>rite commands.

<S>ort the load records by address

This command reorganizes the buffer's load records [record type 01] so
that they are in sequential load order. If non-load records are intermixed
between the load records, they may not maintain their position after the

PRO-CESS/CMDFILE
- 9 -

PRO-CESS / CMDFILE Load Module Maintenance Tool

buffer is sorted.

If the buffer contains any X-type patch records that were generated by
the LDOS utility, PATCH, the program may be adversely affected by sorting. To
apprise you of this situation, the <S>ort command will display the message:

X-patches present. Do you still want to sort <Y,N>? >

If the patch type-01 records are totally outside of the load range of all
non-patch type-01 load records, you may procede to sort the buffer. If no
patch type-01 record extends into the range of a non-patch type-01 record,
you also may procede with the sort [this implies that a type-01 patch record
is wholly contained within the range of a previous type-01 record]. If you
are unsure of the consequences, do not sort. An alternative is to use the
<P>ack command which packs any X-type patches into the non-patch area of the
buffer space.

The sort operation will commence with the display of the message:

Buffer sort conmencing •••

If the buffer contains a very large file, the sorting may take a half-minute
or more. A blinking asterisk will amuse you while you await the completion of
the sort. Upon completion, the status message:

Buffer is now sorted

will be displayed. Note that the record numbers are changed if the sorting
process detects any out-of-sequence load record.

<U>n-remove a 0 removed• record

If you inadvertantly remove the wrong record with the <R>emove command,
you can recover from your error with this <U>n-remove function. As previously
stated, the record number is obtained from a buffer mapping operation.

<W>rite the buffer to a disk file

This command is used to write the buffer contents to a disk file. Since
you may have appended two or more modules into the buffer, you now have the
opportunity of changing the module's ENTRY address as noted in the MODULE's
status display. This capability is useful when appending two or more files
since the transfer address used would default to the transfer address of the
last file loaded. Respond to the prompt:

Enter new ENTRY address or <ENTER> to use [xxxx] >

If you want to change the transfer address (entry point), you can enter the
new address in hexadecimal. If you want to maintain the ENTRY as specified in
the MODULE's status line [and also repeated in the prompt], just depress the
<ENTER> key.

PRO-CESS/CMDFILE
- 10 -

PRO-CESS / CMDFILE Load Module Maintenance Tool

You identify the file specification of the file to be written by
responding to the MENU prompt:

Output file specification>

If you omit the file extension, the default value of 11 /CMD 11 will be used.
Upon successful completion of the file generation, the message:

Requested file now written

will be displayed and PR0-CESS/CMDFILE will await your next MENU selection.

PRO-CESS/CMDFILE
- 11 -

PRO-CESS / CMDFILE Load Module Maintenance Tool

PRO-CESS/CMDFILE PUT TO USE

Appending two or more files

You may have the occasion to assemble two separate object files that you
want to combine into one. In order to append or concatenate two or more files
'into one contiguous file, use the <L>oad command to combine the files into
the memory buffer. When the last file has been loaded, use the <W>rite
command to generate the combined object "load module file. Note that the
transfer address of the concatenated fi1e would be the transfer address
detected from the last file input. The <W>rite command provides the
opportunity of modifying the transfer address to one of your choosing.

Customizing an LOOS library with PaOS/PRO-PaDS

Since PRO-CESS/CMOFILE provides the capability of extracting ISAM
members from LOOS libraries, and PaOS/PRO-PaDS provides the capability of
building USER libraries, we can combine the power of both utilities to
customize a USER 1 ibrary with DOS 1 ibrary commands.

If you execute an LDOS LIB command, you will see LIB <A> and LIB
commands displayed. LDOS/TRSDOS 6.x users will also see LIB <C>. The names of
each command represent the entries to members in SYS6 and SYS7 (also SYS8/SYS
for LOOS 6.x LIB <C>) respectively. The command interpreter which resides in
SYSl compares your command entry to a table which contains ISAM numbers for
each LOOS LIBrary command. It is these numbers that are needed to extract one
of the LIBrary members. Here is a list of the numbers for each command:

SYS6 IBA SYS6-LIBA SYS? IBB

--------- --------- ---------31-APPEND 41-LI ST 51-ATTRI B
32-COPY 81-LOAD 11-AUTO
61-DEVICE IE-MEMORY 33-BUILD
21-DIR 53-RENAME 17-CLOCK
91-00 63-RESET 13-CREATE
66-FIL TER 64-ROUTE 15-DATE
18-KILL* 82-RUN 14-DEBUG
19-LIB 65-SET 71-DUMP
62-LINK A2-SPOOL 22-FREE

* LOOS 6.x command name is 11 REMOVE 11

Optimizing an inefficient load module

SYS7-LIBB

72-PURGE
Al-SYSTEM
16-TIME
IA-TRACE
1B-VERIFY

SYS8-LIBC

Bl-FORMS
82-SETCOM
B3-SETKI
A2-SPOOL

You just purchased that new COBOL compiler and are perturbed at how long
it takes to load - not to mention the disk space it takes up. When you load
it into PRO-CESS/CMDFILE and perform a <M>apping, you are amazed to find that
11 RUNCOBOL II and 11 RSCOBOL II are generated with 16-byte load records. Use the
<P>ack command to reorganize the inefficient RUNCOBOL file and shrink it from
1537 records to 97 records while at the same time you reduce the amount of
disk space taken up by the file from 121 sectors (31.5K) to 98 sectors
(25.5K) - a savings of 6K of disk space.

PRO-CESS/CMDFILE
- 12 -

PRO-CESS / CMDFILE Load Module Maintenance Tool

DISK LOAD MODULE FORMATS

A load module is simply a disk file that can be loaded into memory by
the system loader. The file is made up of variable length records and is
usually a program. Many different types of records are included in a load
module - the DOS makes extensive use of distinct record types in load
modules. One record type is a load record which contains information on where
it is to load into memory. If the file can be directly executed as a program,
it then becomes known as an executable load module (ELM). The usual term that
has been applied to such a file is "CMD". That's because a directly
executable load module can be invoked as if it were a system CoMmanD. We
commonly use the file extension of 11 /CMD" for these command files.

A load module can be conceptualized as a sequence of RECORDS. Note that
we did not say an ordered sequence. Thus, the implication is that the records
do not have to be in an ascending order (contiguous load addresses). Each
record contains three fields: a TYPE field, a LENGTH field, and a DATA field.
It has a one-byte indicator as to what TYPE of record it is. This TYPE code
is used to denote a record as a HEADER record, a TRANSFER record, an ISAM
directory entry record, a LOAD record, or other meaningful structure. Each
record also has a one-byte LENGTH field which is the length of the data area
field. The data field length thus ranges from <l-256> in value [a O implies
256]. The remaining part of the record is its DATA AREA and is used to store
program code, directory information, messages, or other pertinent
information. If you are familiar with BASIC random access files, you will see
the similarity in the fielding of records - except in this case, we have
variable length sequentially accessed records [with partitioned data sets
provided in the PaDS/PRO-PaDS utility, you also have variable length indexed
sequential accessed records]. Figure 1 lists the various TYPE codes currently
used in operating systems.

TYPE DATA AREA

01 Object code load block
02 Transfer address
03 End of load-only program
04 End of partitioned data set member
05 Load module header
06 Partitioned data set header
07 Patch name header
08 ISAM directory entry
OA End of ISAM directory
OC PDS directory entry
OE End of PDS directory
10 Yanked load block
lF Copyright block

Figure 1: Load Module TYPE Codes

Any code above X1 lF 1 is invalid as a record type. In addition, any code
not listed in figure 1 is reserved for future use.

PRO-CESS/CMDFILE
- 13 -

PRO-CESS / CMDFILE Load Module Maintenance Too1

If you could look at a sample object program file, you would notice that
-a starts out with somethin~1 like:

05 06 50 52 4f 43 45 53 lF lE 43 6F
•• PROCES •• Co

stretched across the screen. What you have here is a load module header
(TYPE=05). The length byte (LENGTH=06) follows the TYPE code. The 6-byte DATA
AREA field is the header name. All records follow this "fielding" order. A
record is organized with a TYPE, LENGTH, DATA sequence. The X1 lF 1 begins the
second record. It happens to be a copyright record with a LENGTH of X1 lE 1 or
30 decimal bytes. Incidentally, the TYPE=lF record is generated automatically
by the "COM" pseudo-op in EDAS/PRO-CREATE, the macro-assembler used to
develop and maintain the LOOS operating system.

Note that each record begins with the TYPE code and the first byte
following the end of a record is always the TYPE code of the next record. The
only exception is when a TYPE code indicates the end of a file. If you look
further in the record displayed at relative position X'28', or if you count
30 bytes down from the 11 C11 of 11 Copyright 11 , .YOU wi11 see:

01 02 00 30 •••

The record TYPE is a load block (TYPE=Ol), and the length of the data area is
X1 02 1 , or 258 data bytes. Yes, we previously stated that the length ranged up
to 256 and here we have 258! This TYPE-01 record is a special case. The
two-byte field following the LENGTH is the starting load address for the rest
of the field. Since the LENGTH value includes the 2-byte load address, a
length of X103' would indicate on1y one load byte. A length of X1 04 1 would
indicate two load bytes. A length of X1 FF 1 would indicate 253 load bytes. A
1ength of X1 00 1 would indicate 254 load bytes. To be able to have a data area
wHh up to 256 bytes of loadable data, the LENGTH values of X'Ol' and X102 1

are indicative of 255 and 256 load bytes respectively. This is accomplished
by having the system loader decrement the length value by two when reading a
lo address. The resultant value becomes the true length of the loadable
data.

Tf you could look at the last four bytes of the file, they appear as:

02 02 00 30

This will represent the TRANSFER record (TYPE=02). Again, we have a LENGTH
e which shows a 2-byte data field. The data field contains the transfer

address or entry point to the program in standard low-order, high-order
sequence. The system uses this address as an entry to the program after
successfully loading it into memory. This address is also what is returned in
register pair Hl by the @LOAD Supervisor Call.

So far we have discussed the HEADER, the COPYRIGHT, the LOAD, and the
TRANSFER records. These are the four common record types you wi 11 find in
most load module fi'les. We also observe that our discussion of program load
modules was limited to a single program per file. Another kind of file is one
that contains many program modules (or data modules) as sub-files. Since the
file is divided into sub-files, it is considered a "partitioned data set"
abbreviated as "PDS". The PDS contains a directory of its sub-files with each

PRO-CESS/CMDFILE
- 14 -

PR0-CESS I CMDFILE Load Module Maintenance Tool

sub-file being termed a MEMBER of the PDS and having
directory. The system loader supports a particular kind
contain the library overlays used in LOOS.

an entry in the
of PDS used to

If you could look at a library file, you would see something like:

08 06 21 00 24 00 00 CB 08 06 61 •••

The TYPE code of X108 1 indicates an ISAM DIRECTORY ENTRY record. The LENGTH
byte denotes a DATA area of six bytes. After the sixth byte, you will see
another TYPE=08 starting another ISAM directory entry record. The file is a
partioned data set. The TYPE=08 records are the directory entries for its
members.

The ISAM directory data area is used by the SYSTEM loader to locate
where a particular member can be found in the file. The data area includes
positioning information indicating the exact byte position in the PDS which
is the first record of the member. The six-byte data field is further divided
into sub fields. The first byte (in this case, X'21 1) is the ISAM entry
number. This entry number is provided to the system loader when a library
command is parsed by the command interpreter. The entry number is the PDS
member that will execute your request. The system loader searches the PDS
directory for a matching directory record. The next two-byte sub-field is the
transfer address of the member. The transfer address is contained in the
directory so that more than one transfer address can be applied to a member.
Therefore, a member can have multiple entry points. The last three-byte field
is the triad pointer which points to the first byte of the member. The triad
pointer is composed of the Next Record Number (NRN) and Relative Byte Offset
for the member's first record byte. The system then positions to the pointer
and loads the member. Thus you have six bytes of data as specified by the
LENGTH byte. Since the process uses an index (the directory) to locate the
member's starting byte then proceeds to sequentially read the member, the
access method is termed 11 Indexed Sequential Access Method" (ISAM).

A TYPE-08 record can also have a 9-byte data area. In the PaDS/PRO-PaDS
utility available from MISOSYS, the ISAM directory entry record includes a
three-byte subfield which contains the TRUE length of the member. The
position of a member's logical end-of-file (EOF) can thus be calculated by
adding its length to its position and adjusting for sector boundary
alignment.

If you could look at the first byte following the last TYPE-08 record,
you would observe the sequence:

OA 01 00 04 01 00 01 02 00 26

The TYPE=OA indicates that it is the end of a PDS directory. The SYSTEM
loader will return a 11 file not found 11 error if it reaches this record without
finding a match of the ISAM number. The LENGTH=Ol is needed because ALL load
module records MUST have a length byte. The DATA area contains only a single
arbitrary byte, X1 00 1 • We cannot indicate a null record because a length byte
of X1 00 1 indicates 256 data area bytes. Thus, the X1 0A 1 record type must have
a minimum of one byte in its data area.

The following record is a TYPE=04 to indicate the end of a PDS member.
This record serves but one purpose when used immediately following the

PR0-CESS/CMDFILE
- 15 -

PRO-CESS / CMOFILE Load Module Maintenance Tool

directory - it will result in the return of a "Load file format error" if a
library file is executed as if was a CMO file. When not expecting a
partitioned data set file, the SYSTEM loader wil 1 ignore record types other
than X10l' and X102 1 except for the X1 04 1 • The file reading will terminate at
the X'04' with the above-mentioned error message.

The record type X1 04 1 is usually used at the end of each partitioned
data set member. Each member will usually end with 1104 01 oou rather than a
TYPE=02 record. The system loader uses the X104 1 type code in lieu of the
transfer address code because the SYSTEM loader recovers the transfer address
from the ISAM directory. Thus it needs to take action different from that
when a standard load file has been completely loaded.

The next record types to discuss
file as exemplified in the PaOS/PRO-P
record type X1 06 1 in lieu of an X1 05 1

load module. This is used in certain
refetenced file is a partitioned d a

are those used in a generalized POS
utility. Such a file starts with a

which is the normal header type for a
utility commands to note whether the
compatible with PRO-PaDS utilities.

The partitioned data sets include a MEMBER DIRECTORY which correlates
the member NAME with its associated ISAM entry number. A representative PDS
MEMBER DIRECTORY entry looks like this:

OC OB 64 69 72 20 20 20 20 20 01 01 ?AOC
• d i r • • z

The TYPE=OC record indicates a PDS member directory entry record. The LENGTH
byte specifies that the data area is an 11-byte field. The DATA AREA is
subfielded as an 8-byte member name (stored in 1ower case), a one-byte ISAM
entry number that is used to match up with a corresponding ISAM directory
entry record, and a 2-byte field of member data. The first byte uses bit-7 to
indicate a data member in contrast to an executable CMD program. Bit-6
indicates that the member has been established as "sector-origin" and can be
directly accessed by linkage to the standard file access routines supported
in PaDS/PRO-PaDS Version 2. Bit positions 5-4 are reserved for future use.
Bits 3-0 and the next byte contain the 12-bit DATE field formatted as in the
standard directory entry record. This entry is the date that the member was
added to the PDS. The end of the MEMBER DIRECTORY is indicated by a TYPE=OE
record with its expected length and data field (as in 11 0E 01 00 11). The
purpose of this record is similar to the TYPE=OA record for the ISAM
directory. It indicates the end of the MEMBER directory. The ISAM directory
is positioned in the PDS to follow the MEMBER directory.

last set of record types to discuss is the records associated with
LOOS PATCH utility. When you apply an X-patch to a file, the name of the

patch file is used as a header name with a record type of X'07'. Thus, if you
want to YANK the patch, the PATCH program can read through the file and
search for a l i ke--named header. If a matching header is found, PATCH wi 11
change the header record type to a X109 1 to indicate a yanked patch. Also,
since it may be impossible to remove the patch without bubbling up any code
blocks following the patch (another patch maybe?), PATCH will change the
TYPE=Ol records to TYPE=lO records. The TYPE=lO records will not be loaded by
the SYSTEM loader but will be considered as non-loadable comment records.

PRO-CESS/CMDFILE
- 16 -

TABLE OF CONTENTS
=================

GENERAL •••••

OOCONFIG/CMD *.

. • • • • • • • 2

. • • • • • 3

MEMOIR/CMO ** • • • 5

PARMDIR/CMO * • • • • • • 7

SWAP/CMO * • • • • • • 18

* authored and Copyrighted (C) 1982 by Roy Soltoff
** authored and Copyrighted (C) 1982 by Scott A. Loomer.

PRO-GENY is published by MISOSYS, PO Box 4848, Alexandria, VA 22303-0848.

LOOS is a trademark of Logical Systems, Inc.
TRSDOS is a trademark of Tandy Corp.

PRO-GENY - UTILITY
- 1 -

GENERAL

G E N E R A L

The PRO-GENY package is a collection of four utility programs to further
enhance the use of your
TRSOOS-6.@). These programs
SWAP. The PRO-GENY package
LDOS-6.0 data diskette.

LDOS-6.0 (or licensed equivalents such as
are entitled: DOCONFIG, MEMOIR, PARMDIR, a.nd
is distributed on a 40-track single density

DOCONFIG generates or reloads system configuration files while at
co111nand level, during execuUng Job Control Language, or ~~ithin a running
BASIC program, DOCONFIG expands the power 'in the "SYSGEN 11 command by giving
you complete control over saving and restoring configurations.

MEMOIR generates a directory of low-memory system drivers and
i1igh-memory resident modules. Finany, you can understand what high memory is
being used for - by modu1e name, 1ocation, and 1ength.

PARMOIR is essenti a11y a Job Control Language generator or report writer
that uses the on-line disk directories as a data base of information.
PARMDIR 1 s flexibility will assist you in creating extensive JCL files without
having to type in reams of data. You can even construct customized directory
ii stings.

Finally, SWAP provides the facility of reassigning logical-to-physical
drive assignments already existing in the system's Drive Code Table ..

MISOSYS will continue to supply PRO-fessional "Serious Software (tm)"
packages to enhance the operation and convenience of your LDOS·-6.~ product.
Insist on excellence in software! Get it with MISOSYS Serious Software.

PRO-GENY - UTILITY
- 2 -

DO CONFIGURATIONS

D O C O N F I G

This program expands the power of the DOS 11 SYSGEN 11 command by giving you
much greater control and flexibility in creating or restoring system
configurations. The syntax is:

--
DOCONFIG filespec/CFG (SYSGEN)

filespec - is the file to save or restore.
The file extension will default
to 11 CFG 11 if omitted

SYSGEN - is specified to save a system
configuration. If omitted, the
system will be restored to the
configuration of 11 filespec 11

abbr: SYSGEN=S

===
DOCONFIG is a major enhancement of the configuration capabilities of

your DOS. DOCONFIG works in one of two ways. You can SAVE the current
configuration of your system to ANY file of your choice on any drive of your
choice. You can also restore the machine's configuration at any time from any
of the configuration files you created. The configuration file is constructed
similar to the DOS CONFIG/SYS file (with minor exceptions), except that now
YOU control configurations without having to re-boot your machine.

DOCONFIG can function from 11 DOS Ready 11 or from @CMNDR execution. It can
also be executed from a Job Control Language file to either SAVE or RELOAD a
configuration file while the JCL is executing. This will work even if a
re-loaded configuration changes the drive assignment for the drive currently
executing the JCL file - be it the system's SYSTEM/JCL file or your own
execute-only JCL file. DOCONFIG is smart enough to correct the JCL
interfacing being done by DOS if drive assignments are switched. If the JCL
is SAVING a configuration, the CONFIG file will not reflect JCL as being
active. This means that the resulting configuration can be reloaded without
reentering the JCL that was currently executing. The use of DOCONFIG now
gives JCL more power to run job streams that require revised high-memory
configurations for selected applications. Wow, dynamic reconfiguration - on
the fly!

You can even execute the DOCONFIG program for saving a configuration
while running a BASIC program. This is achieved by executing the command as:

SYSTEM"RUN DOCONFIG filespec (S)"

PRO-GENY - DOCONFIG UTILITY
- 3 -

DO CONFIGURATIONS

Saving the state of the executing BASIC program will require a 52K
configuration file. Restoring the saved configuration file by OOCONFIG at
some future time will result in continuing the execution of the BASIC program
at the statement following the <SYSTEM"RUN DOCONFIG ••• >. The reloading of
the configuration is normally done at DOS command level. This can also be
done from within BASIC via another <SYSTEM"RUN DOCONFIG> command; however,
your current BASIC state will be overwritten unless previously saved with a
"DOCONFIG".

Please note that when saving a configuration, the standard DOS message:

User configuration built

will be displayed at the conclusion of saving the file. This is perfectly
normal as DOCONFIG interfaces with and actually executes the DOS library
module used to create a CONFIG/SYS configuration file.

A good reason to employ the power of DOCONFIG is to give you an easy
means of swapping high-memory configurations - without having to re-boot your
machine. Once you establish a particular configuration, say with COM/DVR,
FORMS/FLT, KSM/FLT, ••• , save it into a configuration file using DOCONFIG.
You can easily restore your machine to that configuration with another
DOCONFIG command. Flexibility is power!

PRO-6ENY - DOCONFIG UTILITY
- 4 -

MEMORY DIRECTORY

M E M D I R

The program, MEMDIR/CMD, provides a directory of system low memory and
high memory usage. MEMOIR can be executed from "DOS Ready", from JCL, or from
@CMNDR. From "DOS Ready", its syntax is:

===
MEMOIR (PRINT)

Print - send display to printer

abbr: PRINT=P

===
Ever wonder what in the world was up in high memory when you execute a

MEMORY command and it says HIGH$=X 1 El23 1 ? Where did all that memory go? No
need to wonder any more. MEMOIR is here to give you a directory of high
memory. It tells you what program/module is there, where it resides, and how
long it is. MEMOIR also shows you what is located in the system low-memory
driver region. MEMOIR gives the information on your high/low memory usage in
the following formatted display:

High Memory Directory HIGH$= X1 aaaa 1 Length= bbbb
Module Start Address End Address Length
name X1 cccc 1 X1 dddd 1 eeee

aaaa = the address of the top of unprotected memory
(or beginning of system low memory);

bbbb = the decimal length of protected memory in bytes
(or the quantity of bytes used in system low memory);

name= the name of the module in protected memory;
cccc = the address of the first byte of the module;
dddd = the address of the last byte of the module;
eeee = the decimal length of the module in bytes.

MEMOIR makes use of the front end linkage header protocol as documented
in the Technical Reference Manual for 6.0. For MEMOIR to work properly, all
modules occupying protected memory must adhere to the system standard header.

If no memory is protected, MEMOIR will advise you of that fact. If a
non-standard module is encountered in protected memory, MEMOIR will attempt
to locate the next properly headered module. The region occupied by the
improperly headered module will be identified as "unknown".

MEMOIR will pause if it fills the screen with the directory; the display
will subsequently pause after each screen page. Pressing any key will display
the next page of the directory. The PRINT parameter will direct output to the
printer in addition to the screen display.

PRO-GENY ·- MEMOIR UTILITY
- 5 -

MEMORY DIRECTORY

An actual example of such a memory directory listing could be similar to
the following directory listing:

MEMOIR 6.0.0 - Copyright 1982 Scott A. Loomer. Licensed to MISOSYS

Low Memory Directory Start= X1 ~8EB 1 Length= 2409
Program Start Address
$KI X1 08E8 1

End Address Length
X1 ~BF9' 783

$00 X1 0BFA 1 X'0E4F' 598
$PR X1 ~E50 1 X1 0E8C' 61
$FD X1 0E8D' X'l03B' 431
$HD0 X1 103C 1 X1 1167 1 300
$CL X1 ll68 1 X1 1253 1 236

High Memory Directory HIGH$= X1 FE19' Length= 486
Program Start Address
$KSM X1 FElA 1

End Address Length
X1 FFll 1 248

$FF X1 FF12 1 X1 FFFF 1 238

PRO-GENY - MEMOIR UTILITY
- 6 -

PARAMETERIZED DIRECTORY UTILITY

P A R M D I R
=============

This utility command is used to generate output based on conditional tests of
directory information. The format of the output is completely under user
control. PARMDIR can also directly generate a MAP file of data filespecs for
use with PRO-PaDS, the Partitioned Data Set utility. The command syntax is:

--
PARMDIR partspec outputspec (parm,parm, •.•)

partspec is the partial file specification
representing the class of files that you
want to examine.

outputspec is the file or device that is to receive
the output. If no file extension is given,
the default is /JCL. If the outputspec is
omitted, it is prompted for.

A, B, C => are the prefix positional parameters

X, Y, Z => are the postfix positional parameters

INV, SYS, have the same selection meanings as in the
MOO, DATE DIR command.

SORT The selected directory records will be in
sorted alphabetic order, unless this
parameter is turned off. Default is ON.

ENTER Allows you to change the default logical
carriage return from the semicolon to another
character. Default is";" (semicolon).

FSPEC Each selected filespec will be written to the
output filespec unless this parameter is
suppressed (e.g. FSPEC=NO). Default is ON.

IF This parameter allows additional tests to be
made before a d'irectory record is passed on
to be processed.

Parameters continued on the next page.
=======================-~==~=============-====================

PRO-GENY - PARMOIR UTILITY
- 7 -

PARAMETERIZED DIRECTORY UTILITY

==================== ====-==== =-===========- -====-=-=-=-=---
(Parameters continued) I

I
This allows you to execute just a portion of I LABEL
of a parameter library. If this parameter is I
used, the first record of the parrnlib MUST be I
a 1 abe 1 (i e. , li@PARMl 11 , etc.) I

MAP

NOTES

PARMS

VIDEO

indicates that a PDS MAP data file is to
be generated. Default is OFF.

Some JCL comment 1 ines are written to the
output device specification. One of them
is your query, shown in JCL comment format.
To suppress JCL comment lines, NOTES=N.
Def au 1t is ON •

This parameter poin to the parmlib fri which
the rest of the query is located. The
parameters in the file can be extended from
the PARMDIR command 1 i ne, but since the
parm1ib parameters are the last ones read,
they can not be over-ridden. If only PARMS is
entered w'ithout a filespec, you n be
prompted for the le ifkation.

Show the results of your PARMDIR query on the
video screen, in addition to the output
device spec. Default is OFF.

abbr: OATE=D, ENTER=E, FSP , INV=I, LABEL=L. MAP=M,
NOTES=N, SORT=O, PARMS=P, SYS=S, VIDEO=V

NOTE: all parameters and keywords may be in upper or
lower case.

===~=-======~

INTRODUCTION

I
I
I
I
I
I
I
I
I
I
!
I
I
I
I
I
I
I
I
I
I
I
I
I
I
!

The PARMDIR utility wi"ll allow you to access the information in yoLr
disk directories and produce formatted reports, files, and even Job Contra:
Language (JCL) files.

HOW TO GET STARTED

It is simplest to get started in learning the power of PARMDIR by just
typing in:

PARMDIR :0 *DO

PRO-GENY - PARMDIR UTILITY
- 8 -

PARAMETERIZED DIRECTORY UTILITY

You will note that the names of all of the visible files that you have on
your :0 drive were sorted and written to the screen.

The first entry on the command line, after the PARMDIR command name, was
entered as 11 :0 11 • This partial filespec tells the program which directory
records to look at. This is similar to the way that the DIR command works.
You might have entered 11 /CMD:0 11 as the first parameter, and then the program
would have shown you only the visible files with an extension of 11 /CMD 11 on
the :0 drive. Another way might have been to use the 11 NOT 11 operator in the
partial filespec, as in 11 -/DVR:0 11 , to see all files except the drivers that
were on your :0 disk. PARMDIR has no restrictions on the way that you
construct the partial filespec. If the drive specification is omitted from
the partial file specification, all drives will be searched. You may also use
the dollar-sign character($) to signify any character. The dollar-sign is
sometimes called a wild-card character, sinc.e it can represent any character
while performing a comparison. This can be used to search for similarly named
files, selecting those filenames that agree with the partial filespec except
for the positions where the wild-card character says that we don't care what
character is in those positions. An example of this would be if you had a
series of accounts-receivable files: AR0F010, AR1F010, AR2F020, AR2F010, etc.
If you used the partial filespec 11 AR$F 11 you would see a listing of all of
those files that are currently on-line (notice that the drive number was
omitted from the partial file specification.

The second parameter represented where the output was directed to go.
This can be a device specification like *PR or *DO (or even the *CL comm-line
driver!), or it can be directed to a file. If a file is used without an
extension, the default of /JCL will be automatically added to your filespec.

The real power of this utility lies in the third item following the
utility name. This parameter string gives you the flexibility to produce a
file that meets almost any of your needs.

OPTIONAL PARAMETERS

There are many optional parameters that have been developed to give you
the ability to produce specialized directory listings and files. Some that
you should already be familiar with from the DIR command, like INV to allow
gathering directory records from files that have been marked invisible.
Similarly, SYS will make the systems files available. Please be sure to note
that files that have been marked SYS may include files that do not have the
file extension of /SYS. The MOD parameter will only let the program look at
files that have been modified since the disk's last backup. The output will
normally ;ie sorted in filename order, unless you enter 11 SORT=N 11 in the
parameter string.

PRO-GENY - PARMDIR UTILITY
- 9 -

PARAMETERIZED DIRECTORY UTILITY

The DATE p11rameter has been designed to ·iet you specify a date range or
specific date that you wish to examine. To examine the directory records that
had been updated on the 3rd of July, 198.3. the DATE parameter would be coded
as;

The range of dates from the 3rd to the 15th of July wou·ld be written as:

•• ,. , OATE,,;·"07 /03/83-07 /15/83 11 ••••

Notice that the dates are written with the opening date of the range given
first and the last date following the hyphen (-). Both dates are not
necessary. If th1::: hyphen is present fo11owing a single date, PARMDIR assumes
that all directory records written on or after that date are to be· examined.
If the hyphen precedes the date, all directory records written on or before
that date are used. For example,

... ,OATE~ff07/03/83-", ...

would produce output for records dated 3 ,July, 1983 or later, while:

..• ,DATE="-07/03/83~ •...

would show only those records written on, or before 1 the 3rd of July~ 1983.

The letters A, B and C are prefix pardmeters, appearing in the output
before the file specification 1 while the letters X1 Y and Z are postfix
parameters, appear-Ing after the fi1espec. These prefix and postfix parameters
can be used to generate substitution tokens, used in JCL processing. If you
just enter "A" in the parameter string, for example, the output will show a
#A# before the file specification. An X would generate an #X# token following
the fi1e spec. Let's see an example.

PARMDIR /CMD:0 DOFILE:1 (A,.lO

will produce a JCL file that looks something like this •

. PARMOIR: /CMD:0 OOFILE:1 (A,X)
#A# OOCONFIG/CMD:0 #X#
#A# MEMDIR/CMD:0 #X#
#A# PARMDIR/CMD:0 #X#
#A# PDS/CMD:0 #X#
#A# U/CMD :0 #X#
//exit

This DO file could be used by executing

PRO-GENY - PARMOIR UTILITY
- 10 -

PARAMETERIZED DIRECTORY UTILITY

DO DOFILE/JCL:1 (A=LIST,X="(HEX)")

which would produce the SYSTEM/JCL file:

• PARMDIR: /CMD:0 DOFILE:1 (A,X)
LIST DOCONFIG/CMD:0 (HEX)
LIST MEMDIR/CMD:0 {HEX)
LIST PARMDIR/CMD:0 (HEX)
LIST POS/CMD:0 (HEX)
LIST U/CMD:0 (HEX)
I /exit

Note the use of the double quotes surrounding '(HEX)' so that the left
parenthesis is properly parsed. If the same JCL file had had the 11 X11 token
substitued with the 11 (P) 11 parameter to the LIST command, after the DO compile
had been completed, the SYSTEM/JCL file would have looked like this .

• PARMOIR: /CMD:0 DOFILE:l (A,X)
LIST DOCONFIG/CMD:0 {P)
LIST MEMDIR/CMD:0 (P)
LIST PARMDIR/CMD:0 (P)
LIST PDS/CMD:0 (P)
LIST U/CMD :0 (P)
//exit

These positional parameters can be made to hold strings by typing the
pre/postfix parameter followed by an equal sign and the string information
contained between double-quotes, eg. A= 11 any string 11 • Let's try an example.
Execute the following,

PARMDIR :0 *DO (A="LIST ")

You will notice that the output directed to the screen by the *DO device
specification will be a series of lines,

• PARMDIR :~ *DO (A="LIST 11)

LI ST COM/DVR :0
LIST COMM/CMD :0
LIST EDAS/CMD:0
LIST FORMS/FLT:0
LIST KSM/FLT:0
LIST PDS/CMD:0
//exit

The first line is a JCL execution-time comment that echos the PARMDIR
query, while the last line signals the end of a JCL stream. Notice that the
lines in between append all of the visible file names from drive :0 to the
word "LIST 11 • If this query had been written to a file, you could have typed
in 11 D0 = fil ename 11 and the JCL processor would have 1 i sted each one of these
files.

PRO-GENY - PARMDIR UTILITY
- 11 -

PARAMETERIZED DIRECTORY UTILiiY

The next optional parameter can be quite useful to those of you who use
the PliO-PaOS partitioned data set utn ity. Onf: of PDS' s command , APPEND, can
accept a list of files that aro to be 111serted into a PDS file. Uc' the MAP
option, a MAP file that ci.m be used in the APPEND operation is a.1., 1 t'ica'
generated, The MAP parametm· wil 1 t1sstrn1e that al 1 of the selee,,
records are non-CMD files, s1nce PARMDIR will not read through the I tes
looking for the transfer address information.

Let's try another example. Let
uti !lt.Y named nsREF 1" ls available
BASIC. You may havr:: o need to get the
ser·ies of BASIC prognim:;, so you start

PARMDIR /BAS:l FILE {A•-: 11 LOAD :.

us assume that a BASIC Cross-Reference
that aper.ates on programs loaded 'into
variable cross-reference listing from a
writing the PARMD[R query.

That would produce a JCL fl le that would look like:

LOAD PROGRAM/BAS:1
LOAD PROGl/BAS:l
LOAD PROG2/BAS:1

Now BASIC's LOAD is a funny animal. because it expects a double-quote in
front of the program narne that it is to load. 1f 1¥e put another quote after
the LOAD, it would not work~ because PARMDIR is looking at the quotes as its
property. This presents us with a problem. Also, if you could place a
carriage-return after the filename, you would be able to generate the 1 SYSTEM
"BREF"'. Well, PARMDIR will allow this. but you must be a little sneaky. Any
time that you need a carriage-rett1r·n in your output, you may enter a
semi-colon (;) inside the quote marks.

If you wish to pass a semi-colon through to the output, without having
it trans 1 ated into a can··i age-return, you may use the ENTER parameter to
change the default logical carriage-return to any other character that you
don't need by placing the new logical carriage-return character in quotes
after the parameter. The ENTER parm can be entered in one of three forms;
ENTER=ddd, ENTER= 1 hh 1 or ENTER="c", where <ddd> represents a three character
decimal character from 0 to 255 1 1 hh' is a two digit hexadecimal character
with"ln apostrophe marks, and 11 c 11 is any sing1e charcter within quotation
marks.

The situation sometimes exists where a character must be passed through
that has special significance to either PARMDIR or DO. This can be rectified
by using (within the quotation marks following a positional parameter) a
per-cent mark (%) fo'l lowed b_y two hex.a.decimal numbers, Yoti can thus enter any
character that can't be entered directly. Any file that you create using this
method MUST be sent through the JCL compilation phase. since that is where
the transformation from hex code to actual character takes place. Remembering
that a hex 22 is a double-quote ("). let's go back to our problem.

PARMDIR /BAS:l FILE (A..-. 11 LOAD%22~,X;: 14 ;SYSTEM%22BREF 11)

PRO-GENY - PARMDIR UTILITY
- 12 -

PARAMETERIZED DIRECTORY UTILITY

After execution of this command line, PARMDIR will produce a file that
looks like this:

KEYWORDS

• PARMDIR /BAS: 1 FILE (A="LOAD%22 11 ,X=" ;SYSTEM%22BREF")
LOAD"PROGRAM/BAS:l
SYSTEM"BREF
LOAD 11 PROGl/BAS:l
SYSTEM"BREF
LOAD"PROG2/BAS:1
SYSTEM"BREF

.
/ /exit

The real power of PARMDIR is explained in this section. Until this
point, you have only been able to attach character strings to the filename.
PARMDIR has been made more useful by the ability to place keywords,
representing data items from the directory, into the output. Here is a table
of the allowable keywords:

--
$DAT - date that the file was last written,

in the format MM/DD/YY.
* $EOF - end of file offset (1 to 256)
* $ERN - ending record number (0 to 65535)

$EXT - file extension
SEXX - file extension extended

* $LRL - logical record length (1 to 256)
$NAM - file name
SNAX - file name extended

* $PRO - protection level (0 to 7, see text)
* $REC - number of records (based on LRL)

(0 to 65535)
* $ORV - drive spec (0 to 7)

$YID - 16-byte volume name and date
($VIO is the same as $VNM
concatenated with $VDT)

SVNM - 8-byte volume (disk or diskette)
name

$VDT - 8-byte volume date (MM/DD/YY)

* Keyword can be used in the "IF" parameter

==

PRO-GENY - PARMDIR UTILITY
- 13 -

PARAMETERIZED DIRECTORY UTILITY

The two e)(tended fields, $NAX and $EXX, are filled out with blanks if
their values are shorter than the eiqht characters allowed for the filename
and the three characters for the fil~ extension. This will be useful in our
next proj1~CL Usfog a, lHtfo ingenuity, JWU can prepare a fi'le that can then
be used to make a diskette library listing. If a file specification is used
as the output-spec. every time that PARMOIR is executed, the file will be
overwritten, which will only allow us to prepare a single diskette directory.
However, if we first route a device such as *PR to a file, and then execute
PARMDIR using this device as output, we will be able to keep executing the
progrdm (perhaps using the "repeat last 00S commcrnd" function) and keep
adding new directory records to the end of the file. Try this:

ROUTE *PR OIR/FIL:0

PARMDIR :1 *PR (A,. .. $NAX/$EXX $OAT $VNM 1\FSPEC=N,VIOEO.NOTES=N}

Now~ put ;:mother d·iskette in drive 1 and repeat the PARMDIR execution for
each of your diskettes. RESET *PR and you should have a file like this,

CMDFILE /CMD l~-Dec-81
DATACOMM/KSM 27-Dec-81
FILESPLT/ 28-Feb-82
BUGT1982/VC 11-Jun-82
CAT /JCL 22-Apr-82
PARMDlR /CMD 21-Apr-82
PARMOIR /DOC lb-Jun-82
JL /DVR 1~-Dec-81
KSM /FLT 20-Mar-82
~™100c /~1 ·r no M · 8? 1'1,.1, ,J ti.. L'f,-• a1 - ._

OATA01A
OAT.L\01A
DATA01A
D,I\TA01B
DATA01B
PARMDIR
PI-\RMOIR
LDOSSOLE
LDOSSOLE
LDOSSOLE

This file (somewhat abbreviated) represents the results of four
executions of PARMDIR. Notice that the file has the various filenames,
extensions, file dates and the name of the diskette in neat columns. With a
1 ittle BASIC program, use of a SYSTEM 11 SORT (VAR="NAME 1',LEN,=LENGTH) sorting
utility, a. listing can be made with all of the fifos in filename (or date)
order. Never again wil1 you have to wonder about the ·iocation of some piece
of software or a file!

Look again at the optional parameter. Did you notice the parameters
"FSPEC=N,NOTES=N 1 VIDEO"? Since the output was intended as a data file,
rather than a JCL file, the 11 NOTES::::N 11 turns off thE~ generation of the JCL
"//EXIT" command and the comments. If the "FSPEC=N" were not used, each
record would be followed by the complete filename. This automatic feature was
used when the JCL file was generated that LISTed all of the files on a
diskette, Finally, the 11 VIOEO" parameter was turned on~ since the output was
going to a file and we wished to also look at it on the screen.

PRO-GENY - PARM!HR UTILITY
- 14 ,.

PARAMETERIZED DIRECTORY UTILITY

PARMLIBS

If you have been trying the examples as we went along, you will have
noticed that the command line for the PARMDIR command rapidly approaches the
79 character limit for keyboard entry. In order to get around this command
line size limitation, PARMDIR has the ability to get its parameters from a
parameter library (parmlib).

If you wish to use the parmlib facility, enter the PARMS parameter in
the optional parm list. You may enter the filename of the parmlib in string
format (e.g. PARMS= 11 MYPARMS 11 ,) or if you wish to be prompted for the filename
of the library, just enter 11 PARMS 11 • PARMDIR assumes 11 /PRM 11 as the default
extension for parmlibs.

The parmlib can be constructed using the DOS BUILD command, the
PRO-CREATE editor, or any available text processor. You must be certain to
save your text file using an ASCII option if you are going to use a text
processor as PARMDIR requires proper line-terminating carriage returns.

Parameters can be written in a relatively free fashion. Parms can be
written one to a line, followed by a carriage return, or several parameters
separated by commas can be written on a line. These parameters can be
extended by other entries on the command line, but cannot be modified. An
example of this is that you could leave "VIDEO" out of your parmlib entry,
and then add it later in the command line by entering 11 PARMS,VIDEO,etc. 11 •

However, if you did have VIDEO in the parmlib entry, you can not turn it off
on the command line by using a 11 VIDEO=N 11 parameter.

Since the DOS is device independent, it is possible to use PARM= 11*KI 11 to
enter the parameters from the keyboard. This can be extremely helpful while
testing. The way to signal the end of file to PARMDIR is to enter a logical
end of file character. This is uusually done by holding down the
<CONTROL-SHIFT-@> keys simultaneously Consult yoour DOS manual for details.

Since the smallest unit of disk drive allocation is the gran and most
parmlibs are much shorter than that, having a separate parmlib for each set
of parameters can be very wasteful of disk space. PARMOIR has gotten around
this problem by allowing several sets of parameters to be combined into one
parmlib, therefore making much better use of disk space. When you build your
parmlib, if you add a label as the first line of each set of parameters, you
can have many different sets of parameters contained in one parmlib. A label
is formed by the at-sign ("@") followed by up to 15 alphabetic and numeric
characters, however a more practical limit should be eight characters
following the at-sign. Here is a sample of a parameter library:

@wrtlist
a= 11 $NAX $EXX $drv $dat $rec $LRL $eof 11

if="$pro > read 11

@DIR056
a= 11 $nax $exx $drv $dat $rec $lrl"
if= 11 $drv = 0 + $drv = 5 + $drv = 611 ,f=n

PRO-GENY - PARMDIR UTILITY
- 15 -

PARAMETERIZED DIRECTORY UTILITY

You should notice that PARMOIR is not sensitive to the case in which the
parameters are written. The "IF" parameter is covered in the next section.

CONDITIONAL EXECUTION (IF)

Earlier, you learned that it is possible to selectively look at files,
depending on the partial filespec. The "IF" parm further allows you to
conditionally accept or reject files, based on logical comparisons within the
"IF" parm. In the table accompanying the keyword section, each one of the
keywords that have been marked with an asterisk can be used in comparisons
with data elements from the directories.

The comparison operators are similar to the ones us.ed in BASIC and Job
Control Language. They are:

===

< Less than
> Greater than
= Equal to
<> Not equal to

<=or=< Less than or equal to
=>or>= Greater than or equa 1 to

& logical ANO
+ logical OR

logical NOT

Each of the data i terns that can be used with the "IF" statement, except
for $PRO (protection level), are numeric. $PRO can be tested for the actual
words representing the protection level (CANT (none), EXEC, UPOT
READ, WRIT, NAME (rename), MOVE (remove), or FULL,) or the number (0-7) that
stands for the access level as shown below. Abbreviation to first character
of the word is acceptable.

==
I
I 0-FULL 1-MOVE
I 4-UPOATE 5-REAO
I

2-NAME 3-WRITE
6-EXECUTE 7-CANT

==
The IF="expression" can be compound and spaces between tokens are

acceptable. Logical expressions can be connected as in JCL by using the
symbols for AND, OR, and NOT (&, +, and -). An example of a compound "IF"
expression is,

PRO-GENY - PARMDIR UTILITY
- 16 -

PARAMETERIZED DIRECTORY UTILITY

If=• $LRL <= 18 & $REC>= 68008•

This would take all files that met the partial filespec comparison and
would additionally check to see that the file had a logical record length
(LRL) less than or equal to 10 and also that there were 60,000 or more
records in the file, before it would accept the directory record for eventual
output.

In the PARMLIB section above, again look at the sample parmlib. It
contains two sets of parameters, labelled WRTLIST and DIR056. Referring back
to the list of keywords, let's look at these members of the parmlib. Both of
them create the output format using the 11A11 prefix parameter, but the 11 1F 11

parameter causes different sets of filenames to be examined and selected from
the on-line directories. WRTLIST will accept only those directory records
that meet the partial filespec from the command line and also only those
files whose protection status is NAME, MOVE or FULL (ie., greater than WRIT.)
DIR056 was written to output the formatted directory information only for
those files that were contained on drives ($ORV) 0, 5 and 6. Obviously,
DIR056 was written for someone that had more than four drives, but who wasn't
interested in the files contained on drives 1, 2, 3, or 4.

ERROR PROCESSING

There are two error types in PARMDIR. Syntax error means that something
is wrong with the conditional 11 IF 11 expression, while the Type mismatch error
occurs when a value field is a string and the convnand parser expects a
number. In case of an error, the optional parameters will be listed on one
line with the error being highlighted on the next line by a line of dots with
a dollar-sign ($) under the error.

NOTE: In the case of a compound 11 1F 11 statement using AND logic, the
first FALSE term makes the entire statement FALSE, therefore the parser will
stop examining the rest of the statement. Thus, it is possible for an error
in syntax or type to be un-flagged if it occurs in a term subsequent to an
AND-connected FALSE term. The PARMDIR output, however, will still be correct.

PRO-GENY - PARMDIR UTILITY
- 17 -

DRIVE REASSIGNMENT

S W A P
=======

This program expands the power of the DOS "SYSTEM (SYSTEM=d) 11 command by
allowing you to reassign the logical-to-physical drive assignments for any
two drives even if Job Control Language is under execution. The syntax is:

--
SWAP :s :d

:s - is the drive specification of
the SOURCE drive. It may be in
the range [0-7 & <> :d].

:d - is the drive specification of
the destination drive. It may
be in the range [0-7 & <> :s].

--
This utility is used to reassign the relationships between a logical

drive number (specifications 0 through 7) and the physical disk drives
associated through the system's Drive Code Table (DCT). SWAP will function
from 11 DOS Ready", from JCL, or from @CMNDR execution (i.e. SYSTEM "RUN SWAP
:s :d). SWAP is especially useful within Job. Control Language files that are
used to install particular system configurations.

If you attempt to swap the SYSTEM drive (drive 0), the replacement drive
must contain a system disk. SWAP will prompt for a system disk if necessary
and able; however, if SWAP is being executed from JCL, it will abort.

If JCL is executing from one of the drives being swapped, SWAP will
reassign the logical drive number used for the JCL to match the reassignment.

An example of a swap command is:

SWAP :4 :1

which will exchange the physical drive associated with logical drive 4 with
that associated with logical drive 1. Note that what was referenced as drive
4 is now referenced as drive 1 and vice versa.

PRO-GENY - SWAP UTILITY
- 18 -

IFC - Interactive File Control

•

:[[F[b • • • • • • • • • • • • • • •

(PRO-)IFC/CMD: Copyright 1983/84 Karl A. Hessinger, All rights reserved.
Published by MISOSYS, Inc., Alexandria, Virginia.

Table of Contents

General Information •.

Distribution Diskette

Invoking IFC/Cfv1D ••.•

1

1

2

Invoking IFCLIST/CMD •••••••••••••••• 6

Note: LOOS is a trademark of Logical Systems Incorporated
TRSDOS is a trademark of Tandy Corp.

GENERAL INFORMATION

Anytime you have more than one disk drive on-line, you develop a
collection of disks containing many files. File maintenance of moving files
among disks while purging unneeded files can become a clumsy series of DIR
comnands followed by COPY and or !<ILL/REMOVE commands. Using PURGE with its
file-by-file query can sometimes be useless when you have forgotten the
contents of the files - you need to list them. IFC gives you the ability to
perform these maintenance tasks interactively. A menu-controlled screen
provides the tools to easily list, copy, delete, or rename a file or groups
of files. You will find IFC essential to the task of file maintenance.

DISTRIBUTION DISKETTE

This documentation covers the operation of both the LOOS 5.1 Model I/III
version (IFC) and the LOOS or TRSODS 6.x compatible version (PRO-IFC). The
IFC package is provided on a 35-track single density data diskette for LOOS
Version 5.1. The PRO-IFC package is provided on a 40-track double density
data diskette for LDOS/TRSDOS Version 6. The diskette label identifies the
DOS that the package is designed to function with.

IF C Utility - Gen e.ral
- 1 -

IFC - Interactive File Control

INVOKING IFC

IFC is easily invoked via the command syntax:

==============;===============~==================:=============
IFC :d (X)

d - Specifies the logical drive number to work with.
The entry is optional.

X Allow the use of IFC without a system disk in
drive 0.

==========================~======~=============================
If no drive number was entered on the command line, IFC will prompt you

for the working drive with:

Select drive (0 - 7) ?

Enter the number of the drive you wish to work with. After the disk directory
has been scanned and its contents sorted, the following information will be
displayed:

FILENAME/EXT:D *IP+ MM/DD/YY xxxxK :

The first column is the file specification. The asterisk [*] indicates that a
file is a partitioned data set (PaDS). The uppercase "I" and "P" stand for
invisible and protected file respectively. The plus sign [+J indicates that
the file has been modified since the last time it was backed up. The third
column contains the date on which the file was last modified. The last column
is the file size rounded to the nearest K. This is not the amount of space
that the file takes up on the disk but rather the size of the file. If the
file had been tagged, then the colon would be followed by an asterisk to in
dicate its flagged state.

The first file on the screen will have the character string "==>"
pointing to it. We will call this string an "arrow". The file pointed to by
the arrow will be referred to as the "current file". Any command which acts
upon a single file will act on the file pointed to by this arrow. The copy,
delete, tag and untag commands all affect the current file. To move this ar
row, simply use the <DOWN ARROW> to advance to the next file in the list, or
the <U 0 ARROW> to go to the previous file in the list. You may also depress
the <SPACE BAR> to advance the pointer to the next file.

When the pointer advances to the start or the end of the list it will
"wrap-around" to the end or the beginning. IFC will also display a blank line
to indicate that wrap-around has occurred.

Depress the <H> key and IFC will display the help menu. The help menu
looks like this:

IFC Utility - Invoking IFC
- 2 -

IFC - Interactive File Control

A - Again, retag files
0 - <Un>Tag old/new files
T - Tag current file
U - Untag current file
W - Wildcard <un>tag

+I*P - <Un>Tag by attributes

-- <M>ass functions -
C - Copy files
D - Delete files
R - Ren ame f i 1 es

C - Copy current file
D - Delete current file
L - List current file
R - Rename current file

E - Exit to DOS

F Free space on drive
H - Display help
Q - Execute DOS command
S - Select new drive

Press any key to continue

Any of IFC's commands may be aborted by depressing the <BREAK> key.

CURRENT FILE COMMANDS

The following group of commands all deal with a single file. All of
these commands will act on the current filespec.

<C>opy a file

This command will copy the current file to a specified drive. Depressing
the <C> key will generate the prompt, "Copy file(s) to drive ?" Once you
select the destination drive, the prompt, "Reset MOD flags (Y/N) ?" will be
dislayed. Depress <Y> and IFC will reset the modification flag in the di
rectory of the source disk. Once the copy has been completed IFC will advance
the arrow pointer to the next file.

<D>elete a file

Depress the <D> key and IFC will provide you with an opportunity to
escape via the prompt, "OK to delete file : filespec/ext:d ?" Depress the <Y>
key to delete the current file. Depress the <N> key or <BREAK> to abort. Once
the file has been deleted, IFC will advance the arrow to the next file.

<L>iat a file

Depress the 'L' key and IFC will prompt, t1Ust file in ASCII (Y /N) ?"
Depress the <N> key to list the file in hex, or <Y> to list the file in
ASCII. For the list function to work properly, you must have IFCLIST/CMD on a
disk which is currently in one of your disk drives. If IFCLIST /CMD cannot be
found, then the error message, "Program not found" will be displayed.

<R>ename a file

Press the <R> key and IFC will prompt, "New name for FILESPEC/EXT:D ?"
Type in the new filename for that file and depress the <ENTER> key. The file
will be renamed. The arrow pointer will be returned to the start of the list.

IFC Utility - Invoking IFC
- 3 -

IFC - Interactive File Control

TKDll'G ~DS

When an IFC command is given that will work on a group of files, the
files must be tagged.

<T>ag files

Depress the <T> key and IFC will tag the current file. An asterisk [*]
will be displayed next to the file to indicate that the file has been tagged.
IFC will also display a running total (in K) of all tagged files.

<U>ntag files

Depress the <U> key and IFC will untag the current file. The untag com
mand works just like the tag file except in reverse.

<A>gain, retag files

Depress the <A> key and IFC will tag all of the files that were tagged
and later mass copied. These files will be marked with a number sign [II] to
indicate that the file was tagged and then copied.

<O>ld tag

This tagging command references the working disk against a target disk.
Depress the <O> key and IFC will prompt you with, "<O>ld or <N>ew files ?"
Depress the <O> key and all of the files which exist on both disks will be
selected. If you depress the <N> key, all of the files which do not exist on
the target disk but are in the currently selected disk will be selected. You
will then be prompted with, "<T>ag or <U>ntag files ?" Depress the <T> key
and all of the selected files will be set up for tagging, or depress the <U>
key and the selected files will be set for untagging. Finally, you will then
be prompted for the target drive with, "Drive to scan (0 - 7) ?" Depress
the number of the drive to scan for the target drive. Your selection will
then be invoked.

< W > ildcard tag

The wildcard tag command is used to tag or untag a group of files that
match up with a wildcard file specification. Depress the <W> key and IFC will
prompt with, "<T>ag or <U>ntag files ?" Depress <T> to have all matching
files tagged, or <U> to have all matching files untagged. IFC will then
prompt, "Filename wildcard ?" Enter a wildcard and IFC will either tag or
untag all matching files. The wildcard file name and extension fields may
consist of standard filespec characters [A-Z,0-9], question marks [?] which
match all characters in their respective position, and an asterisk [*] which
will force a match of all characters to the end of the field.

<+IP*> Tag by attribute

The modify tag will tag all files which have the modified flag set in
the directory. These files will be marked with a '+' on the display.

IFC Utility - Invoking IFC
- 4 -

IFC - Interactive File Control

lvASS CI}.t,JON)S

The Mass commands are used to act on all of the tagged or all of the
untagged files. Depressing the <M> key will begin the selection of a "mass"
command. IFC will prompt, "Mass <C>opy, <D>elete or <R>ename ?" Make the
selection by pressing the first letter of the function you wish to perform.

<M>ass copy

The mass copy command works just like a multiple copy command. IFC will
move all tagged files or all untagged files automatically. The selection is
made by responding to the prompt, "Copy tagged or untagged (T/U) ?" Depress
the <T> key to select all of the tagged files, or the <U> key to select all
of the untagged files. Don't forget that <BREAK> will abort the operation.
IFC will then prompt you for the target drive with, "Copy file(s) to drive?"
Enter the destination drive for the files you wish to copy or depress <BREAK>
to abort. IFC then prompts, "Reset MOD flags (Y /N) ?" Answer <Y > and IFC will
reset the modification flags in the source directory. IFC automatically re
sets the modification flags in the destination directory but you may not want
them cleared from the source directory. Depressing <BREAK> will abort the
mass copy function.

<M>ass delete

For mass delete, IFC prompts, "Delete tagged or untagged files (T/U) ?"
Depress the <T> key and IFC will purge all tagged files from the disk. If you
depress the <U> key, IFC will purge all of the untagged files. Depressing
<BREAK> will abort the mass file delete operation.

<M>ass rename

The mass rename operation lets you change the file name and/or extension
for all of the tagged files. The new filespec is derived by passing the cur
rent filespec through a template. The template is entered in response to the
query, "Rename template ?" and is identical in syntax to the wildcard ident
ified above. Alphanumeric template characters will be passed to the new
filespec. The question mark [?] will cause the correspondingly positioned
character of the current filespec to be part of the new filespec. If the
template contains an asterisk [*], the remaining part of the field of the
current filespec will be transferred to the new filespec.

MISCELLANEOUS COMMANDS

<E>xit to DOS

Depress the <E> key and IFC will return to DOS Ready.

<F>ree space

Depress <F> and IFC will prompt, "Free space on drive ?" Depress the
number of the drive you wish IFC to scan. IFC will display the following
information:

Drive D Disk name : NNNNNNNN Free space

IFC Utility - Invoking IFC
- 5 -

xxxxxK

IF C - Interactive File Control

where "D" is the drive number, "NNNNNNNN" is the disk's name, and "xxxxx" is
the total amount of free space on that diskette. Depress <ENTER> to continue.

<H>elp

Depress the <H> key and IFC will display the list of all IFC commands.
Press any key to continue.

<Q> Execute IXlS ccmnand

Depress the <Q> key and IFC will prompt for the DOS command with the
query, "Enter DOS command:" Enter any DOS command and IFC will execute the
command. You should be careful not to perform any DOS command which will
change the contents of HIGH$ as IFC will protect itself above HIGH$ when ex
ecuting the DOS command. When the command has completed, IFC will resume
after you respond to the prompt, "Presa any key to return to IFC ... "

<S>elect new drive

This command is used to change the working drive. Depress the <S> key
and IFC will prompt, "Select drive (0 - 7) ?" Depress the number of the
drive you wish to log in. Depressing <BREAK> will return you to the command
prompt. If, for some reason, IFC cannot log in the new drive, it will again
display the Select drive prompt. Once IFC has returned to the Log drive
prompt for the second time, a <BREAK> will return you to DOS Ready.

IFC Utility - Invoking IFC
- 6 -

IFC - Interactive File Control

INVOKING IFCLIST

This program is used to perform the list function of IFC. It produces a
screen-paged display. IFCLIST is invokable apart from IFC via the syntax:

==
IFCLIST filespec (parm, parm •••)

---------- ASCII listing-------------------------

NUM

TAB

p

PAUSE

Number lines. Defaults to OFF.

Expand tabs on output. Defaults to ON.

Send output to printer. Defaults to OFF.

Stop after displaying a screen of info.
Defaults to ON.

---------- HEX listing---------------------------

p

LRL

PAUSE

Send output to printer. Defaults to OFF.

Set logical record length. Defaults to
LRL of file.

Stop after displaying a screen of info.
Defaults to ON.

Abbr: N=NUM, T=TAB, A=ASCII, H=HEX

==

IFC Utility - Invoking If CLlST
- 7 -

ZCAT - Disk Catalog Utility

Copyright 1983 by Karl A. Hessinger - MicroConsultants
Published by MISOSYS, Alexandria, Virginia

TABLE OF CONTENTS

w • • 2

2

General Information

Distribution Diskette

Invoking ZCAT ••••• • • • • • 3

Adding disks to a catalog. . . 4
Updating a cataloged disk ••••••••••. 5
Changing a disk's name • • • • . • • • • 5
Removing a cataloged disk . . • 6
Searching for a file ••••••••.•.•. 6
Displaying a cataloged disk directory .•••• 7
Listing cataloged disks' names 8
Printing catalog listings. . • 8
Saving changes and exiting to DOS ••••. 9

Error Message Explanations ..•.

Note: LOOS is a trademark of Logical Systems Incorporated
TRSDOS is a trademark of Tandy Corp.

- 1 -

10

ZCAT - Disk Catalog Utility

GENERAL INFORMATION
===~===============

We know you have built up a collection of hundreds of diskettes and need
an easy way to locate that particular program and file. We know you want fast
response and speed! So rather than waste time trying to determine what DOS
each of your disks is compatible with, we recognize that the LOOS user stays
with LOOS. ZCAT/PRO-ZCAT is a very fast machine language program that creates
and maintains a catalog of all files which reside on your LOOS (or TRSDOS
6.x) formatted diskettes. Each catalog file can store the directory file
information on up to 255 diskettes or disks. Approximately 2000 file
specifications are supported per catalog file. This number varies with the
amount of memory available.

This package is all you need to get a handle on your disk collection via
the catalog file or files. It is menu driven for ease of use. The "GETSPEC"
initial menu allows you to specify which drive contains your catalog files [a
catalog file uses an extension of "/CAT" and is the data base for your disk
directories]. Once you specify the drive number, ZCAT displays all files on
that drive with a 11 /CAT" extension. You then enter the name of the catalog
file you wish to read or create. Once the specified catalog file has been
read or created, the master menu will be displayed.

ZCAT is the professional way to search for the diskette containing a
desired file. Because the diskette name (pack ID) is so important to isolate
specific diskettes, it is important for you to maintain distinct names on
your disks when formatting them. ZCAT or your DOS "ATTRIB" command can be
used to rename a diskette where that function becomes necessary.

DISTRIBUTION DISKETTE
=====================

This documentation covers the operation of both the Model I/III LOOS
version (ZCAT) and the LOOS 6.x or TRSDOS 6.x compatible version (PRO-ZCAT).
The ZCAT package is provided on a 35-track single density data diskette for
LOOS Version 5.1. The PRO-ZCAT package is provided on a 40-track single
density data diskette for LDOS/TRSDOS Version 6.

- 2 -

ZCAT - Disk Catalog Utility

INVOKING ZCAT

The ZCAT utility allows you to create and maintain a catalog of all
files which reside on any LOOS or TRSDOS 6.x compatible formatted diskette.
It is invoked via the syntax:

ZCAT (INV,SYS,PAGE=nn)

INV Allows the cataloging of invisible files.
Defaults to OFF.

SYS Allows the cataloging of system files.
Defaults to OFF.

PAGE=nn Sets the printed page length (default=66)

Abbreviations: !=Inv, S=Sys, P=Page

ZCAT/CMD is a machine language program which will allow the rapid
creation and maintenance of a catalog of files. When ZCAT is typed from DOS
Ready, the program will load and display the initial logo and version number.

After the initialization has been completed, you will be prompted with
the "GETSPEC Menu" as follows:

Enter drive (0 - 7) or <BREAK> to exit.

Selecting a number <O - 7> will display all files on that drive with a /CAT
extension. 11 CAT 11 is the default extension of directory catalog files for use
with ZCAT. Pressing <ENTER> will bypass this prompt. Pressing <BREAK> will
return you to DOS Ready. The drive number which you enter will also be used
as a default drivespec for the 11 Catalog filespec" response.

You will then be prompted to enter the name of a catalog file with:

Catalog filespec 1 •••••••••..•••

Enter the name of the catalog file you wish to read or create. The file
specification may be composed of a file name of up to eight characters in
length with an optional drive specification. The extension of 11 /CAT" will be
added to the file specification automatically by ZCAT.

After the file specification has been entered, the master menu will be
displayed and ZCAT will read in the catalog file if it already exists.
Because the maximum number of files which ZCAT can hold changes with the
amount of free memory available, it is possible to get the error message:

File too large for available memory

If this occurs, press <ENTER> to return to the master menu and xit to DOS.
Reduce the amount of high memory which is allocated to DOS and re-run ZCAT.

- 3 -

ZCAT - Disk Catalog Utility

Once the catalog file has been read, the MASTER MENU will be displayed.

>MASTER MENU<

<A>dd disk to list
<U>pdate disk in list
<C>hange a disk's name
<R>emove a disk from list
<S>earch for a file
<D>isplay a disk's files
<L>ist disks on file
<P>rint files in list
<E>xit to GETSPEC

Selection?

CAT file : MARC/CAT:O
Disks cataloged 15

Files cataloged
Maximum# files

324
2226

The desired function may be selected by pressing the letter of the
function which is bracketed between the 11 <>" symbols. In this display, the
"DIR file" field will display the current catalog file specification
[MARC/CAT is shown for illustration], the "Disks cataloged" field will
display the quantity of disks cataloged in the catalog file, the "Files
cataloged" field will contain the total number of file specifications
cataloged, while the "Maximum # files" field will display the upper limit
based on the memory currently available. The following sections will explain
the use of each of the functions.

<A>dd disk to list

The <A>dd function will scan a disk that has not been previously
cataloged and add the disk to the catalog list. All non-system visible files
that reside on the disk will be cataloged [invisible and or system files may
be cataloged if those options are selected at the invocation of ZCATJ. Press
the <A> key from the master menu and you will be prompted:

Scan which drive (0 - 7) ?

Enter the number of the drive which contains the disk you wish to be scanned,
or press <ENTER> to scan the last accessed drive. The identification of the
last accessed disk drive will be displayed at the bottom of the screen. After
the drive has been selected, ZCAT will scan the directory and add all of the
non-system, visible files to the list [see ZCAT's INV and SYS command line
parameters]. If the disk has already been cataloged the error message:

Disk is ALREADY cataloged

will be displayed. You may press <ENTER> to return to the master menu.
Remember, each disk cataloged must have a name that is unique to the disk.

- 4 -

ZCAT - Disk Catalog Utility

After the disk has been cataloged, ZCAT will sort the directory list and
will again prompt you for the drive to scan. This gives you an easy way to
catalog a number of diskettes via one keystroke. To return to the master
menu, press <BREAK> at the prompt. This function only changes the working
copy of the catalog in memory. The actual changes to the catalog file are
made via the 11 <E>xit to GETSPEC 11 command, under your control. This is a
safeguard for your protection.

<U>pdate disk in list
--

The <U>pdate function will scan the directory of an ALREADY cataloged
disk. It will update the directory file to reflect any changes in the free
space on the disk or any changes in the contents of the disk. Press the <U>
key from the master menu and you will be prompted:

Scan which drive (0 - 7) ?

Enter the number of the drive which contains the disk you wish to be scanned,
or press <ENTER> to scan the last accessed drive. The drive last accessed
will be displayed at the bottom of the screen. After the drive has been
selected, ZCAT will scan the directory and update the directory list to
reflect any changes that have been made since the disk was last <U>pdated or
<A>dded. If the disk has NOT already been cataloged, the error message:

Disk is NOT cataloged

will be displayed. You may then press <ENTER> to return to the master menu.
Remember that a disk must be <A>dded before it can be <U>pdated.

After the disk has been scanned, ZCAT will sort the directory list [in
case files have been added to or deleted from the diskette] and will again
prompt you for the drive to scan. This provides you with an easy method to
update the catalog for a quantity of diskettes via one keystroke. To return
to the master menu press <BREAK> at the prompt. This function only changes
the working copy of the catalog in memory. The actual changes to the catalog
file are made via the 11<E>xit to GETSPEC 11 command, under your control. This
is a safeguard for your protection.

<C>hange a disk's name
======= ==============

The <C>hange function will allow you to change a diskette•s name from
within ZCAT. Press <C> from the master menu and ZCAT will prompt:

Which drive contains disk (0 - 7) ?

Pressing <BREAK> will return you to the master menu. After the drive has been
selected, the current disk name will be displayed. You will be prompted for
the NEW disk name. Enter the new disk name or depress <BREAK> to return to
the master menu without changing the disk name. After the name has been
changed, ZCAT will wait for <ENTER> to be depressed before returning to the
master menu.

- 5 -

ZCAT - Disk Catalog Utility

<R>emove a disk from list
=============:;:=========

The <R>emove function will delete all traces of the disk from the
catalog's directory list. Press <R> from the master menu and ZCAT will
display the names of all disks which are currently in the directory list.
ZCAT will pause after displaying a screen full of disk names. Press <ENTER>
to continue the display or press <BREAK> to be prompted for "Disk name ?".
Enter the name of the disk you wish to remove from the list or press <BREAK>
to return to the master menu. If the disk name cannot be found you will be
prompted:

**Disk name NOT found * *
Press <ENTER> to return to the master menu.

After the diskette has been removed from the catalog's directory list,
the list will be sorted and you will be prompted to press <ENTER> to return
to the master menu. This function only changes the working copy of the
catalog in memory. The actual changes to the catalog file are made via the
"<E>xit to GETSPEC" command, under your control. This is a safeguard for your
protection.

<S>earch for a file

The <S>earch function will allow you to rapidly locate a file or a group
of files in the directory list. Pressing <S> from the master menu will prompt
the question:

Search string? ••••••••••••

Enter the search string or press <BREAK> to return to the master menu. The
search string may be a filename, a partial filename, or an extension. The
search string may also contain a wild card character ("$") which may be used
to mark a position as "don't care".

The partial filespec will display all files that begin with those
characters. For example, a search string of "LB" would return any filenames
which have the first two characters of "LB".

The extension will display all files which have the same extension. A
search string of 11 /CMD 11 would display any files with an extension of 11 /CMD".

The dollar sign (11$ 11) wild-card character, may be used to mark a
character position as 11 don't care". For example, a search string of "F$R"
would display all files in which the first character is an "F" and the third
character is an "R". Note that the second position can be any character. A
search string consisting of a single 11$ 11 will list the entire catalog.

The following are some examples of possible search strings and possible
matches:

- 6 -

Search string

L/CMD

$A/CMD

/$$T

ZCAT - Disk Catalog Utility

Possible matches
--

LBASIC/CMD, LPT/CMD

BACKUP/CMD, BASIC/GMO

MOD3/DCT, TEST/TXT

ZCAT will then display all files in the directory list which match the
search string. The filename will be followed by an asterisk (11* 11) if the file
is a Partitioned Data Set. Along with the filename will be displayed the
modification date of the file and the disk on which the file is located. ZCAT
will pause after displaying a screen full of files. Press <ENTER> to continue
the display or press <BREAK> to return to the master menu.

<D>isplay files on a disk
--

The <D>isplay-files-on-a-disk function will display a list of all files
which reside on a particular disk. Press <D> from the master menu and all of
the disk names cataloged will be displayed. ZCAT will pause after displaying
a screen full of disk names. Press <ENTER> to continue displaying disk names
or press <BREAK> to be prompted for "Disk name ? 11 • At the disk name prompt
enter the name of the disk whose files you wish to view, or press <BREAK> to
return to the master menu. To display all files, use the <S>earch function
with"$". If the disk name cannot be located you will be prompted with:

* * Disk name NOT found * * 11

You may press <ENTER> to return to the master menu.

If the disk name has been found, ZCAT wil 1 display the disk name and the
free space available on the disk at the top of the screen. ZCAT will then
display an alphabetical list of all files on the disk. ZCAT will pause after
displaying a screen full of files. Press <ENTER> to continue the display, or
press <BREAK> to return to the master menu. The fo 11 owing in format ion wi 11 be
displayed for each file:

Filename (Followed by an 11* 11 if the file
is a Partitioned Data Set)

Protection level i.e. full, read, exec, etc.)

Logical Record Length { 1 to 256)

of Records (number of logical records)

Size (the amount of space that the file
takes up on the disk, rounded to the
nearest K (lK = 1024 bytes))

Modification date the date the file was last written to)

Disk name { the disk name where the file is located)

- 7 -

ZCAT - Disk Catalog Utility

A sample of this listing follows:

Disk name : MARC0037 Free Space : OK
Filespec Prot LRL #Recs Size Mod Date Disk name

===== :==
ATOO/ASM Full 256 2 lK 27-Sep-82 MARC0037
CASSCO/ASM Full 256 34 9K 18-Jun-82 MARC0037
CASSCO/CMD Fu 11 256 4 lK 18-Jun-82 MARC0037
CC2/CCC Fu 11 256 46 12K 22-Sep-82 MARC0037
CC3/CCC Full 256 27 7K 22-Sep-82 MARC0037
CC4/CCC Fu 11 256 32 8K 21-Sep-82 MARC0037
CC6/CCC Full 256 18 5K 31-Aug-82 MARC0037
CHGDATE/BAS Fu 11 256 4 lK 20-0ct-81 MARC0037
DABS/ASM Full 256 2 lK 27-Sep-82 MARC0037
DADD/ASM Full 256 3 lK 27-Sep-82 MARC0037
[listing continues]

<L>ist disks on file
--

The <L>ist function will display all the disks which are currently in
the directory list. Press <L> from the master menu and the directory filename
will be displayed at the top of the screen. The filename will be followed by
a list of all the disk names on file with the free space available on that
disk. ZCAT will pause after displaying a screen full of disk names. Press
<ENTER> to continue the display or press <BREAK> to return to the master
menu. The following illustrates such a listing:

These disks are in catalog file . MARC/CAT:O

Disk Free Disk Free Disk Free Disk Free
-------- -------- -------- ---------------- ---- -------- ---- -------- ---- -------- ----
MARC0025 3K MARC0026 3K MARC0027 OK MARC0028 OK
MARC0029 OK MARC0030 33K MARC0031 2K MARC0032 15K
MARC0033 3K MARC0034 9K MARC0035 llK MARC0036 32K
MARC0037 OK MARC0038 84K MARC0039 54K

<P>rint files in list
--

The <P>rint function will allow you to produce a hardcopy of your
directory list. Press <P> from the master menu to obtain the print menu.

>PRINT<

<F>iles by disk order
<E>xpanded file order
<C>ompressed file order

Selection?

- 8 -

ZCAT - Disk Catalog Utility

Select the type of printout you would like by pressing the first
character of the name or press <BREAK> to return to the master menu. You will
be prompted:

Press <ENTER> when paper is set to top of form

When the paper has been positioned such that printing will begin on the first
line of the paper, press <ENTER> to begin printing. Printing may be aborted
at any time by pressing <BREAK>.

<F>iles by disk order

The disk names will be printed in alphabetical order. Printed with each
disk name will be the amount of free space currently available on each disk
and an alphabetical list of all files on that disk.

<E>xpanded file order

Files will be printed alphabetically, one across and 50 per page. The
information printed for each file is the same as the "Display Directory"
screen listing.

<C>ompressed file order

Files will be printed in alphabetical order, two per line and 100 per
page. The following information will be printed for each file:

Filename

Modification date

Disk name

<E>xit to GETSPEC
=================

(the name of the file)

(the date the file was last written to)

(the disk name where the file is located)

Press <E> to return to the GETSPEC menu. If changes have been made to
the catalog file list, you will be prompted:

Save changes ?

Press <Y> to save the changes or press <N> to return to GETSPEC without
saving the changes. At the GETSPEC menu you may press <BREAK> to return to
DOS Ready or you may select another catalog file.

- 9 -

ZCAT - Disk Catalog Utility

ERROR MESSAGES

___________ ,..

Disk is ALREADY cataloged

This error will occur when the disk name of disk which is being <A>dded
is already in the catalog directory list. Use the <U>pdate function if the
disk has already been cataloged. Warning: this error will also occur if two
disks have the same disk name. If such is the case, change the disk name
using the <C>hange function and then <A>dd it.

Disk is NOT cataloged

This error will occur when the disk name of a disk which is being
<U>pdated is not in the catalog directory list. Use the <A>dd function to add
a disk to the catalog list.

Disk name NOT found

This error will occur anytime ZCAT cannot locate a disk name in the
catalog directory list. Check your spelling of the disk name.

Maximum file limit reached

This error will occur when the number of files in the catalog directory
list becomes equal to the maximum number of files ZCAT can currently hold.

* * Max "imum disk 1 imit reached * *
This error will occur when 255 disks have been cataloged in one catalog

directory list.

File too large for available memory

This error will occur when the requested catalog file contains more
entries than the current free memory will allow ZCAT to hold. Return to DOS
Ready and free up some high memory [you may have to reboot and alter your
high memory configuration].

DOS error messages

If an error occurs during disk I/0 the standard DOS error message will
be displayed. Press <ENTER> to return to the master menu.

- 10 -

ZSHELL Command Line Processor

Copyright (C) 1983, 1984, 1985 by Karl A. Hessinger, MicroConsultants
Published by MISOSYS, Sterling, Virginia

Who has not come across a BASIC program that was loaded with "PRINT"
statements while that brand new printer was just connected to the machine.
Well, time to change al 1 of those "PRINT" statements to 11 LPRINT 11 • Perhaps you
learned the old technique of poking certain values into memory locations said
to be the "Video Device Control Block" and were thus able to "modify" your
program easily. In any event, you progressed to purchasing DOS and discovered
this wonderful ROUTE command. With it, you could "ROUTE *DO to *PR" and run
that BASIC program with the PRINTS mysteriously changed to LPRINTs. All you
had to do was to "RESET *DO II after your program comp 1 eted and returned to
11 DOS Ready".

DOS was a generation ahead of the "poking". There is, however, a more
modern technique of dealing with the problem of wanting program output to go
somewhere other than where the program was originally intending it to go. Or,
for that matter, input to a program. ZSHELL is that next step. We have
provided three significant features in this product. ZSHELL and your DOS
system take you to another level of convenience and flexibility with program
input/output.

TABLE OF CONTENTS

DISTRIBUTION DISKETTE

WHAT IS ZSHELL ANYWAY

WHAT CAN I DO WITH ZSHELL

INSTALLING ZSHELL

COMMAND LINE SYNTAX

ADVANCED TOPICS

ERROR MESSAGES EXPLAINED.

KISTORE FILTER . .

WILDCARD • ...

ZSHELL - 1

• • 2

• • • • • 2

• • 3

• • 4

• • • 5

• 8

9

11

12

ZSHELL Command Line Processor

DISTRIBUTION DISKETTE

The ZSHELL package is distributed on a 35-track single density LOOS
formatted data diskette. This diskette is for use under LOOS 5.1 on either a
Model I or Model III. The PRO-ZSHELL package is distributed on a 40-track
double density data diskette and is for use under TRSDOS 6.x. The master
diskette con ta ins three programs: ZSHELL/CMD, KI STORE/FLT, and WC/CMD. This
documentation pertains to the use of ZSHELL under either DOS environment.

WHAT IS ZSHELL ANYWAY?

Almost every program needs some type of input and produces some type of
output. In most cases, the input is retrieved from the keyboard, or in DOS,
the *KI device (the "Kl" stands for Keyboa~d Input while the asterisk, "*",
is prefixed to indicate a device specification). Any output is then displayed
on the video, or the *DO device (Display Output). ZSHELL is a system
enhancement which wi 11 allow you to temporarily redirect the input or output
from or to any file or device instead of the normal *KI or *DO devices until
the program being executed returns to "DOS Ready".

Every one of us has a program which gets some input from the keyboard
and then displays its output on the video. What do you do if you want the
output to go to the printer (*PR)? You'd probably sit down and rewrite the
program to change all the PRINT statements into LPRINT statements. Well, that
leaves you with two different programs that do almost the same thing, except
that their output goes to two different places. Well somehow that just
doesn 1 t seem fair to have to have two programs, so you whip out your DOS
manual and find the ROUTE command. Aha, I can write one program to do the
computing and use the ROUTE command to cause the output to go to the *DO or
the *PR without having two different programs.

OK, that sounds good to me. But what happens when the program finishes,
and everything that should be displayed on the screen is still going to the
printer? Well you have run into one of the primary disadvantages to using the
ROUTE command. To unroute the device you use the RESET command; however, the
RESET command not only will undo the route, it wil1 also remove any drivers
or filters from the device. This inability to unlink the ROUTEing but leave
the drivers and filters associated with the device unaltered (the device
chain), can be overcome by using ZSHELL. ZSHELL can perform the same
redirection but can limit it to the duration of the program's execution.
After the program 1 s execution has terminated, all of the redirection will be
removed and all of the devices will be left as they were before the
redirection was done.

The process of causing keyboard input or video output to go to somewhere
other than is normally expected (*KI or *DO) is called "1/0 redirection". For
the remainder of these instructions the *KI will be called the standard input
and the *DO will be called the standard output. With ZSHELL, you can tell
your computer where to get the standard input or where to put the standard
output or both at the same time.

Now that you have an understanding of I/0 redirection, we will advance
to the next major capability of ZSHELL, piping.

ZSHELL - 2

ZSHELL Command Line Processor

You don't have to be a professional plumber to know that you have pipes
running through your house or apartment. These pipes are used to distribute
the water throughout your dwelling. ZSHELL, like your house, uses pipes, but
instead of carrying water they carry information. With ZSHELL it is possible
to cause the standard output of one program to become the input of another
program. The information is said to be "piped" between the programs. Just
visualize ZSHELL as an imaginary pipe carrying the information from one
program to another.

ZSHELL 1 s last ability is quite different from the first two and much
easier to understand. ZSHELL allows you to enter more than one command on a
command line - all you have to do is separate the commands with a semi-colon.
The first command will be executed. When "it has completed, the next command
will be executed. The only limit to the number of commands is the length of
the command line - which can be up to 255 characters in length with ZSHELL.

WHAT CAN I DO WITH ZSHELL?

Well now that you have a basic understanding of 1/0 redirection and
piping just how would you go about using them? To help you to understand
what you can do, let's look at some examples.

Example# 1

The personal finance program you just completed, writes all of its
output onto the video but you would like to have a copy appear on your
printer. Instead of rewriting your program you run your program and instruct
ZSHELL to redirect your output to the printer instead of the video.

Example# 2

You have a program which takes all its input from the keyboard and you
would like to use it under JCL. After reading the DOS manual you find that
since the program uses INKEY$ to scan the keyboard, JCL won't function. You
can still accomplish what you want by making a file of the necessary
keystrokes, run the program and instruct ZSHELL to route all standard input
from that file.

Example# 3

You are trying to load a document which has tab characters (ASCII 9)
into a text editor which doesn't "understand" the tab characters. You then
remember that the LIST command has an opt ion to expand tabs. Instruct ZSHELL
to have the LIST command list the file with tabs expanded and pipe the output
into the editor.

ZSHELL - 3

ZSHELL Command Line Processor

INSTALLING ZSHELL

ZSHELL is a module that interfaces with the resident portion of DOS.
ZSHELL loads and relocates itself to high memory. It protects itself by
lowering the HIGH$ contents. Thus, before you can use the additional
functions present in ZSHELL, you have to "install" it in high memory. This is
done at "DOS Ready 11 by entering the command:

ZSHELL [(ORIVE=d,BREAK=sw,LENGTH=n,DISABLE)J

where:

DRIVE=d

BREAK=sw

LENGTH=n

OFF

Place p1prng files on drive d with
d being a valid drivespec <0-7>.

An option to send or omit a BREAK
character upon reaching the end of
the input file. Default is OFF

Establishes the length of the SHELL
command line [255 max]. It defaults
to the DOS command line length.

Is used to disengage the resident
ZSHELL module and attempt to
reclaim the high memory it used.

Abbreviations: DRIVE=D, DISABLE=DIS=OFF=N
Note: Parameters within brackets 11 [] 11 are optional.

Typing ZSHELL from DOS Ready will cause ZSHELL to load, relocate itself
to high memory, and then become active. After ZSHELL has been activated it
will remain tied into the system until the computer is rebooted. A "global
reset 11 CANNOT remove ZSHELL from the system. This is because ZSHELL is
connected to the resident system module in addition to the devices. RESET
cannot undo this "connection".

The parameter, DISABLE, will be discussed first. Since ZSHELL is tied
into the system and cannot be removed by RESETf the OFF parameter serves this
purpose. Once ZSHELL is activated, if you want to de-activate it, simply
enter the command:

ZSHELL (OFF)

ZSHELL will unhook itself from the system. If no other module was placed into
high memory after ZSHELL was installed, then ZSHELL will reset HIGH$ to the
value that existed prior to its installation. Thus, the high memory space it
used wi11 be freed for subsequent use.

The concept of piping is normally implemented on larger computers by
executing the 11 interconnected 11 programs simultaneously. This is known as
"multiprocessing". With it, a channel of communications is established
between the two programs - it is this channel that is termed the 11 pipe 11 • Your

ZSHELL - 4

ZSHELL Command Line Processor

computer environment does not support 11multiprocessing 11 • Therefore, piping
has been implemented by chaining one program to another with the "standard
output" of the first temporarily stored in a holding file until the first
program completes its execution. The second program then uses this holding
file as its "standard input 11. Since the second program could have standard
output 11 piped" to a third program, a second holding file is needed. The
parameter, DRIVE, will allow you to instruct ZSHELL on which drive to place
these piping files. DRIVE will default to drive=O if you omit the parameter.

The DRIVE parameter can be changed by simp_l_y reinstalling ZSHELL with a
new parameter string. Any parameter not entered on the command line will be
left unchanged. The new copy of ZSHELL will re-use the same space in memory
if it finds itself already installed.

The BREAK parameter is associated with redirection of standard input.
Its use wil1 be described in that section.

The LENGTH parameter is used to establish the size of the command line
buffer which ZSHELL maintains. This can be up to 255 characters in length.
The minimum is the DOS limit (63 for Model I/III, 79 for DOS 6). A longer
line buffer permits the entry of complex piping commands as well as more
individual commands connected with the 11 ; 11 multiplier. However, the command
line passed to the DOS after parsing by ZSHELL and extraction of redirection
segments can not exceed the DOS limit.

COMMAND LINE SYNTAX

While active, ZSHELL monitors the command 'line entered in response to
the 11 D0S Ready" prompt. If the first character of the command line is a
double-quote, 1111 , then the command line will be passed unaltered to the
command interpreter. This could be useful for those LC users wanting the
application to ·invoke any redirection desired. There are several special
characters that, when entered on the command line, will cause ZSHELL to take
appropriate action. Let 1 s take a 1ook at each character and see 1r1hat it does.

Redirect STANDARD OUTPUT:>,>+, », »+
The first character is the greater-than symbol or r·ight caret, 11>11 • When

the 11>" symbol is detected on the command line, ZSHELL will cause the *DO
standard output to be redirected to the devicespec or filespec which follows
the greater-than symbo 1. If the can:~t is fo1 'lowed by the pl us sign, "•1- 11 , then
the *PR device is considered to be the standard output device. For example:

DEVICE >*PR

will direct the display of the DEVICE command to a printer instead of the
video display. Alternatively,

DIR :0 (A,I,P) >+CATALOG/TXT

wil1 direct the 1'printer" output of the Drnectory comma.ncl to a disk file
named, CATALOG/TXT. Do NOT attempt to n~direct standard output to the *DO
device. When you use the ">+" construct, do NOT redirect to the *PR device.

ZSHELL - 5

ZSHELL C011111and Line Processor

If the 11>11 symbol is fol lowed by another greater-than symbol, the output
will be APPENDED to the devicespec or filespec. For example:

>>MAP/DAT FREE :1

will append the drive 1 free space map to the end of the file, MAP/DAT. Note
that this example shows the redirection specification first. Actually, the
redirection specification can be anywhere on the command line except in the
middle of a parameter string. Thus, the following are equivalent command
statements:

>>MAP/DAT FREE :1
FREE >>MAP/DAT :1
FREE :1 >>MAP/DAT

Isn't that flexibility? Remember that the standard output will be assumed to
be the *DO device. The *PR device can be easily used as "standard output" by
simply adding a plus sign immediately after the right caret.

Redirect STANDARD INPUT:<, <I,<@

The second character is the less-than symbol or left caret, 11<11 • The
less-than symbol causes ZSHELL to redirect standard input. Programs that take
input generally have a couple of different methods of noting when no more
input is available. Some expect you to depress the <BREAK> key when you have
completed your input (e.g. the DOS BUILD library command). Other programs are
looking for a specific sequence of characters to signify the end of input. In
this case, if an end-of-file is reached, it is an error and the program
should abort. There are also programs which do not expect to ever see an
11 end-of-file 11 condition from their "standard input" (i.e. BASIC). To satisfy
these three classical ways of handling input terminating conditions, ZSHELL
provides three forms of input redirection. All three forms cause standard
input to be redirected according to your device or file specification but
cause different things to occur if an end-of-file is reached.

If the 11<11 symbol is entered immediately followed by the devicespec or
filespec, than the standard input will be retrieved from that file or device.
When, and if, the end-of-file is reached, ZSHELL will automatically disengage
the redirected input and a <BREAK> character will be sent through the
standard input before control is returned to the *KI. The BREAK bit in the
KFLAG$ will also be set (the KFLAG$ is documented in the technical section of
your DOS manual). If you do not program in assembly language, you need not
bother with the KFLAG$). This BREAK will allow a program to detect the
end-of-file (EOF) condition by scanning for a break.

If the 11< 11 symbo 1 is fo 11 owed by a number sign or pound sign, 11 # 11 , an
end-of-file is handled somewhat differently. The control of the standard
input will be returned to the *Kl device as noted above; however, the
original *Kl handling will be restored. Thus, the standard input is retrieved
once again from the original *Kl device. The pound sign character, 11# 11 ,

should be easy to remember if you correlate 11 pounding 11 on something as
11 breaking 11 it.

Passing an EOF is the 11 UNIX 11 way of handling input redirection. If you
find it convenient for use in your programs to have standard input revert to

ZSHELL - 6

ZSHELL Command Line Processor

the normal keyboard device without having to use the pound sign, you can
request this at the time you install ZSHELL by specifying the option:

ZSHELL (BREAK=OFF)

with BREAK=OFF installed, ZSHELL will invert the sense of the pound sign
appendage •· "<u passes control to *KI while 11<#'' adds the BREAK character.

The last form of standard input red"irection is the 11 <'' symbol followed
by an 11 (a" symbol. If you had specified a command entry of the form:

BASIC RUN 11 BATCH 11 <@DATAFILE/TXT:2

and an end-of-file was reached, ZSHELL will abort the current program by
transferring control to the @ABORT vector. If Job Control Language (JCL) was
active, thf: JCL will abort. Use this form of redirection if your program
should not expect to read to the end of a file and would, in fact, bi; an
error if it did. Remember the 11 @11 to indicate @ABORT since H is the first
character of 11 @ABORT 11 •

Pipe OUTPUT (1) to INPUT (2): I, I+, I#, I@, I#+, I@+

The Udrd charact,:::r is the vertical brace, 11 j 11 • The vertica·l brace ma_y
be geni::rated by simultaneously depressing <CLU\R><SHIFT></>. The 11 ! 11 \oJi1.!
cause ZSHEU. to 11 plpei' the display output of the first command (*DO output)
to the inpt,t of the second command. There ma.Y be any number of commands tha.t:
are S(>.parated by the vertical brace which continue to pipe: from left to
right. You are limited by the maximum size of the command line [th·l,s is one~
reason for i:i larger command line length at ZSHELL insta·11ation tiine]. For
exainph~, ii command ·1ine of:

DIR :0 (A,I,S,N) ! LSCRIPT

1,dll pipe the output of the director.Y display into LSCRIPT for immerliate word
processin9. It is important to observe the parameter, "N'\ and why it ·ls
specH1ee1. Remember that certain programs presenting data on the disp!t:1y
screen may pause when the screen is fi l 1ed. These programs are c:xpect fog some
keyboard response (typically an <ENTER>) before continuing. J11st because you
have redirected the display output to a printer or disk fi Ir, it does not
eliminate the need for such a response. Programs that present output pauses
shoulc1 hawi options (such as the "N° parameter in the DIR command) to dl low
non-stop output, If you observe that a particular· program m~y have stopped
its output, it may be because of this pause. You may want to 11 nudqi::"1 it alonq
by li,2press ·ing <ENTER> or some other response as di cta.ted by Uil~ program you
are r11nning. Without ZSHELL, to achieve the identical results as Lhe above
exainplr:0, you would t1,1vf~ ildtl to enter the sequence:

ROUTE *PR TEMP/TXT:O
DIR :0 (A~I,5,P)
RESET *PR
l.SCRIPT
<SHIFT><ENTER> L TEMP/TXT

ZSHELL .,, 7

ZSHELL Conmand Line Processor

The *PR device output can be used for piping standard output instead of
the *DO device by irrmediately following the vertical bar with a plus sign,
11+ 11 • This is done just as easily as it was done for output redirection. You
may also use the pound sign and abort options with pipe corrmands just like
they were illustrated for the redirection of STANDARD INPUT. The options are
used to effect the result of an end-of-file detected on the device stream by
the program accepting input from the pipe.

Multiple c011111ands: ;

The last character is the semi-colon, 11 ; 11 • ZSHELL will allow the
entering of more than one command on a single command line. Just separate the
commands with a semi-colon and ZSHELL will handle the rest. For example,

LIST TESTl/ASM; LIST TEST2/ASM; LIST TEST3/ASM:l

In this example, note that spaces may be inserted either before or after
the semicolon. ZSHELL will disregard any spaces surrounding the semicolon as
well as the vertical bar (piping). Again be aware that the redirection
specifications can occur anywhere on the corrmand line except within any
par~meter string. ZSHELL ignores all characters found between a left
parenthesis, 11 (11 , and its closing right parenthesis, 11) 11 • Parentheses are
used to surround the parameter strings. Note that most versions of DOS permit
you to omit the closing right parenthesis. However, if you are going to
follow your parameters with redirection specifications, you must close your
parameters with the right parenthesis so ZSHELL can accept your
specifications. For example:

DIR (A,I,S,N >CATALOG/TXT:3

will not redirect the output of the DIRectory corrmand since the parameters
are not 11 closed 11 • The corrmand should be entered in one of the following
forms:

DIR >CATALOG/TXT:3 (A,I,S,N
>CATALOG/TXT:3 DIR (A,l,S,N
DIR (A,l,S,N) >CATALOG/TXT:3

ADVANCED TOPICS

Although you cannot redirect the standard input or output of a DO
command (ZSHELL restriction), you may use redirection from within a Job
Control Language (JCL) file. If standard input is redirected in a "command
1 ine 11 from within a JCL file, then ZSHELL wi 11 cause standard input to be
retrieved from the specified file or device and NOT from the JCL file. This
retrieval will continue until the particular application execution has
terminated or until end-of-file is reached. If the standard input redirection
is accomplished using the 11<11 specification, JCL may or may not ABORT on
reaching end-of-file depending on where within the execution the <BREAK>
generated by ZSHELL was detected. If the standard input redirection is
accomplished using the 11<# 11 specification, then the JCL will continue where
it left off upon reaching end-of-file. Note that the two preceeding results
will be reversed if 11 BREAK=ON 11 is installed. If the 11 <@ 11 option is used, then
the JCL will be terminated when the standard input reaches end-of-file.

ZSHELL - 8

ZSHELL Command Line Processor

A few words are necessary concerning the use of the pound s·ign, 11 # 11 • JCL
a·lready uses the "#" to indicate a substitution field when using compiled
JCL. Therefore, if you are going to compile your JCL file, you must enter two
u#" 1 s in a row to let JCL know you indeed meant to enter a 11 # 11 • This means
that you specify 11 <##INPUT/TXT 11 • If, on the other hand, you are going to
execute your JCL file v✓ ithout compilation (i.e. DO =), then use only a
single 11# 11 •

It is very simple to write programs that utilize the abilities of
ZSHELL. All input should be retrieved from standard input (*KI) and al ·1
output should be sent to the standard output. In BASIC, this would be 11 INPUP
and "PRINT" statements. In assembly language, you would use @KEY, @KEVIN,
@DSP, and @DSPLY calls. The program may then be used with ZSHELL to allow you
to redirect the input and the output. One version of a program may then
access any device or file for input or output without any modifications.

For those of you who own LC, the C language compiler available from
MISOSYS, specify the #OPTION REDIRECT OFF in your LC source program. Since
ZSHELL will handle all command line I/0 redirection. the code output by the
compiler to handle redirection would never be used and only wou1d serve to
lengthen the object program unnecessarily.

When using the redirection of standard input, one should be aware that
this feature may not always work as expected because of certain programming
techniques. Take for an example a program that checks for a <BREAK> by
constantly invoking @KBO and checking for the BREAK character. The program
will be retrieving keystrokes which may have been meant for later responses.
To deal with this problem, your programs should check for the <BREAK> kc~Y by
checking the status of the BREAK bit contained in the KFLAG$. Consult your
DOS manuals for programm·ing details.

To perform the piping functions, ZSHELL uses two files cal1ed ZO/PIP and
Zl/PIP. These files are created by ZSHELL when you have entered PIPING
specifications and are used during the execution of the programs being piped.
They will no longer be used by ZSHELL once the piping ·is completed and may be
deleted later if you don't wish to have them cluttering up your disk. Do NOT
delete either one of these files whne piping is active.

Under Model I/III operation, ZSHELL acts like a filter
It also intercepts the @KEVIN call originally executed by
this, if you are using the LOOS MiniDOS filter and ZSHELL
eirepeat-1 as t-00S-cornmand II fun ct ion, <CLEAR><SHIFT><R>, w·i 11

ERROR MESSAGES EXPLAINED

on the keyboard.
SYSl. Because of

is installed, tt,e
be inoperative.

Approximately half of the resident portion of ZSHELL is taken up by file
buffers and control blocks. Input and output each take a 256-byte buffer and
a 32-byte File Control Block. Due to these memory requirements, the E!rror
messages have: been kept short to avoid wasteful use of high memory. Because
of this, there are only two error messages. They are explained below along
with examples.

ZSHELL - 9

ZSHELL Command Line Processor

Redirection error

There are four major causes for this error message.

1. An attempt was made to redirect standard input or standard output more
than once on a command. ZSHELL could redirect the standard output to a file
or a device but NOT to both at the SAME time.

BASIC >*PR >TEST/TXT

2. An attempt was made to redirect standard input or standard output on a DO
command. Redirection is possible within a JCL but NOT on the command that
initiates that JCL.

00 JOB/JCL <INPUT/TXT

3. An attempt was made to redirect standard input to be retrieved from the
*KI device. Standard input normally comes from the *KI.

LSCRIPT <*KI

4. An attempt was made to redirect standard output to the standard output
device. When ">" is used, you cannot redirect the standard output to the *DO
and when ">+" is used, you cannot redirect the standard output to the *PR.

LSCRIPT >*DO

Piping error

There are three major causes of this error message.

1. An attempt was made to redirect standard input while the standard input
was already being piped from a previous command.

DIR :0 I LSCRIPT <INPUT/TXT

2. An attempt was made to redirect standard output while the standard output
was being piped to a following command.

DIR :0 >OUTPUT/TXT I LSCRIPT

3. An attempt was made to invoke @CMNDI while piping was active.
to execute a 11 /CMD 11 program from within an executing program,
@RUN system cal 1 instead of @CMNDI. The @CMNDI cal 1 is needed
supervise the redirection function.

Parameter error

If you want
then use the
by ZSHELL to

This is not an error message displayed by ZSHELL.
this error from your application if you inadvertently
parameter string entries with the right parenthesis
parameters with redirection specifications.

It is possible to get
forget to close your

when you follow the

ZSHELL - 10

ZSHELL Cormnand Line Processor

KISTORE/FLT

KISTORE is a filter that will allow the simultaneous copying of all *KI
keystrokes to a file or device. This filter will be useful in conjunction
with ZSHELL 1 s ability to retrieve standard input from a disk file. In order
to install the filter, it is necessary to enter the command:

FILTER *KI to KISTORE [(REWIND)]

SET *KS to KISTORE [(REWIND)]
FILTER *KI *KS

(Model I/III)

(DOS 6.x)

REWIND Is used to force the storage file
to be rewound to its beginning so
that any contents of an existing
file are ignored.

Abbreviations: REWIND=R
Note: Parameters within brackets "[]" are optional.

Once KISTORE/FLT is established, the filter remains dormant until
activated. Simultaneously depressing <CLEAR><SHIFT><O> will activate the
filter. You must be using the DOS keyboard driver to activate and deactivate
the filter. KISTORE will save the contents of the last two lines of the video
and display the prompt:

Filespec?

Enter the filespec that you want to use for the storage of the keystrokes.
KISTORE will restore the contents of the last two video lines and begin the
copying of keystrokes to the specified file. All keystrokes are appended to
any already in the file (assuming the file was existing). This permits you to
separate the storage into more than one session - with each session
concatenating additional keystrokes to those already stored. If you want to
reuse an existing file and ignore its contents, then specify the REWIND
parameter when you install KISTORE.

The copying may be terminated by simultaneously depressing
<CLEAR><SHIFT><X> and the file will be closed.

To use KISTORE to create a standard input fi1e, run the applicatfon,
depress <CLEAR><SHIFT><O> to open the storage file. Proceed to use the
application as you would normally. When you are f'inished, exit to 11 DOS R1.:ady 11

if applicable, and depress <CLEAR><SHIFT><X> to terminate the storage and
close the file. The same appl'ication may then be executed later using the
file as standard input and your computer wi11 be able to duplicate all of
your commands without you having to retype them.

ZSHELL - 11

ZSHELL Command Line Processor

WILDCARO

WILDCARD is a 11 shel l II processor that al lows you to invoke compatible
commands on a number of file specifications that match a wildcardspec entered
on the command line. You enter the command line once while the WILDCARD shell
processor searches the designated disk drive(s) for files that match your
wildcard specification. WILDCARD builds a Job Control Language file of your
command line (minus the 11 WC 11) substituting each matching file specification
for the wildcard specification on a separate command line. WILDCARD then
automatically invokes the JCL file. You can invoke a WILDCARD command with:

WC COMMAND wildcardspec command-parms

COMMAND Is any DOS command using the syntax
11 COMMAND f i 1 espec ••• 11 •

wildcardspec Is the wildcard specification used
to match on-line disk files. The
wildcard syntax is described below.

command-parms Is any additional entries needed
for the 11 COMMAND 11 •

The 11 wil dcardspec II uses the file name and file extension as two di st inct
fields for matching purposes. If the drive specification is entered, WC will
search that specific drive for all files matching the name-extension wildcard
fields. If the drive specification is omitted, then all drives will be
searched. Within each field, WC accepts two wild characters, 11 ? 11 and 11 * 11 • The
question mark will match any character in that character position. The
asterisk is used to match all trailing characters in the field. For example,
11 ?SHELL/TXT: l II wi 11 match with ASHELL/TXT, BSHELL/TXT, etc. but ASHELLl/TXT
will not match. A global match of all filespecs would be an entry of the
form, "*/*"; whereas a match of all /CMD files would be an entry of the form,
"*/CMD". If a minus sign, 11 - 11 , precedes the filename field, WILDCARD will
select files that do NOT match the wildcardspec. Any entered password will be
used in the full file specifications generated by the selection process. Note
that this wildcard syntax is different from the DOS partspec!

WC is quite useful to perform repetitive tasks on files whose file
specifications are similarly constructed. For example, to list out all /TXT
files on drive 1, you could use a WILDCARD entry of:

WC LIST */TXT:1

What DOS commands are compatible? All of the following DOS commands are:
APPEND, ATTRIB, LIST, LOAD, REMOVE/KILL RENAME, RESET(V6), and RUN. Other
programs that expect a filespec on the command line are also "compatible".

A word of caution - WC uses the SYSTEM/JCL Job Control Language file;
therefore, WC cannot be invoked from JCL!

ZSHELL - 12

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf
	257.pdf
	258.pdf
	259.pdf
	260.pdf
	261.pdf
	262.pdf
	263.pdf
	264.pdf
	265.pdf
	266.pdf
	267.pdf
	268.pdf
	269.pdf
	270.pdf
	271.pdf
	272.pdf
	273.pdf
	274.pdf
	275.pdf
	276.pdf
	277.pdf
	278.pdf
	279.pdf
	280.pdf
	281.pdf
	282.pdf
	283.pdf
	284.pdf
	285.pdf
	286.pdf
	287.pdf
	288.pdf
	289.pdf
	290.pdf
	291.pdf
	292.pdf
	293.pdf
	294.pdf
	295.pdf
	296.pdf
	297.pdf
	298.pdf
	299.pdf
	300.pdf

